A 2D Range Hausdorff Approach for 3D Face Recognition

This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and template datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.

[1]  M. W. Koch,et al.  3D facial recognition: a quantitative analysis , 2004, 38th Annual 2004 International Carnahan Conference on Security Technology, 2004..

[2]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[3]  Horst Bunke,et al.  Classifying range images of human faces with Hausdorff distance , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[4]  Patrick J. Flynn,et al.  Face Recognition Using 2D and 3D Facial Data , 2003 .

[5]  Patrick J. Flynn,et al.  A Survey Of 3D and Multi-Modal 3D+2D Face Recognition , 2004 .

[6]  Sandia Report,et al.  A Novel Window Based Method for Approximating the Hausdorff in 3D Range Imagery , 2004 .

[7]  Patrick J. Flynn,et al.  Assessment of Time Dependency in Face Recognition: An Initial Study , 2003, AVBPA.

[8]  W. J. Rucklidge E?cient Computation of the Minimum Hausdorfi Distance for Visual Recognition , 1994 .

[9]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[11]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[13]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Brian C. Lovell,et al.  General Purpose Real-Time Object Tracking using Hausdorff Transforms , 2002 .

[16]  Patrick J. Flynn,et al.  Face Recognition Using 2 D and 3 D Facial Data , 2003 .

[17]  Clark F. Olson,et al.  View-Based Recognition Using an Eigenspace Approximation to the Hausdorff Measure , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Peng Li,et al.  Automatic landmark extraction from three-dimensional head scan data , 2002, IS&T/SPIE Electronic Imaging.

[19]  Mark W. Koch,et al.  A Prescreener for 3D Face Recognition Using Radial Symmetry and the Hausdorff Fraction , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[20]  Stina Svensson,et al.  Digital Distance Transforms in 3D Images Using Information from Neighbourhoods up to 5×5×5 , 2002, Comput. Vis. Image Underst..

[21]  P. Jonathon Phillips,et al.  Face recognition vendor test 2002 , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[22]  P. Phillips,et al.  1 FACE RECOGNITION VENDOR TEST 2002 : EVALUATION REPORT , 2003 .

[23]  Barnabás Takács,et al.  Comparing face images using the modified Hausdorff distance , 1998, Pattern Recognit..

[24]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..