FFRT: A Fast Finite Ridgelet Transform for Radiative Transport

This paper introduces an FFT-based implementation of a fast finite ridgelet transform which we call FFRT. Inspired by recent work where it was shown that ridgelet discretizations of linear transport equations can be easily preconditioned by diagonal preconditioning, we use the FFRT for the numerical solution of such equations. Combining this FFRT-based method with a sparse collocation scheme, we construct a novel solver for the radiative transport equation which results in uniformly well-conditioned linear systems.

[1]  Konstantin Grella Sparse tensor phase space Galerkin approximation for radiative transport , 2014, SpringerPlus.

[2]  Claude Jeffrey Gittelson,et al.  A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes , 2013 .

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  Gitta Kutyniok,et al.  Parabolic Molecules , 2012, Found. Comput. Math..

[5]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[6]  Siddhartha Mishra,et al.  Efficient Preconditioners for a Shock Capturing Space-Time Discontinuous Galerkin Method for Systems of Conservation Laws , 2015 .

[7]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[8]  M. Modest Radiative heat transfer , 1993 .

[9]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[10]  Philipp Grohs,et al.  Intrinsic Localization of Anisotropic Frames II: α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{docume , 2014, Journal of Fourier Analysis and Applications.

[11]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[12]  Structure Preserving Schemes for Birkhoff Systems , 2010 .

[13]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[14]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[15]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[16]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[17]  Philipp Grohs,et al.  Optimal Adaptive Ridgelet Schemes for Linear Transport Equations , 2014, 1409.1881.

[18]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[19]  P. Grohs Ridgelet-type Frame Decompositions for Sobolev Spaces related to Linear Transport , 2012 .

[20]  Philipp Grohs,et al.  A shearlet-based fast thresholded Landweber algorithm for deconvolution , 2016, Int. J. Wavelets Multiresolution Inf. Process..

[21]  Minh N. Do,et al.  The finite ridgelet transform for image representation , 2003, IEEE Trans. Image Process..

[22]  P. Grohs,et al.  Cartoon Approximation with $$\alpha $$α-Curvelets , 2014, 1404.1043.

[23]  Sören Häuser,et al.  Fast Finite Shearlet Transform: a tutorial , 2012 .

[24]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[25]  R. Hiptmair,et al.  Integral Equations for Acoustic Scattering by Partially Impenetrable Composite Objects , 2014, Integral Equations and Operator Theory.

[26]  Konstantin Grella,et al.  Sparse Discrete Ordinates Method in Radiative Transfer , 2011, Comput. Methods Appl. Math..

[27]  Ralf Hiptmair,et al.  Novel Multi-Trace Boundary Integral Equations for Transmission Boundary Value Problems , 2015 .

[28]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[29]  Thomas Yu,et al.  Scattered manifold-valued data approximation , 2016, Numerische Mathematik.

[30]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..