Solid-fluid interaction with surface-tension-dominant contact

We propose a novel three-way coupling method to model the contact interaction between solid and fluid driven by strong surface tension. At the heart of our physical model is a thin liquid membrane that simultaneously couples to both the liquid volume and the rigid objects, facilitating accurate momentum transfer, collision processing, and surface tension calculation. This model is implemented numerically under a hybrid Eulerian-Lagrangian framework where the membrane is modelled as a simplicial mesh and the liquid volume is simulated on a background Cartesian grid. We devise a monolithic solver to solve the interactions among the three systems of liquid, solid, and membrane. We demonstrate the efficacy of our method through an array of rigid-fluid contact simulations dominated by strong surface tension, which enables the faithful modeling of a host of new surface-tension-dominant phenomena including: objects with higher density than water that remains afloat; 'Cheerios effect' where floating objects attract one another; and surface tension weakening effect caused by surface-active constituents.

[1]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[2]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[3]  Robert Bridson,et al.  Robust Topological Operations for Dynamic Explicit Surfaces , 2009, SIAM J. Sci. Comput..

[4]  E. Guendelman,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH 2005.

[5]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[6]  Hongkai Zhao,et al.  A local mesh method for solving PDEs on point clouds , 2013 .

[7]  Ronald Fedkiw,et al.  A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension , 2015, J. Comput. Phys..

[8]  Ronald Fedkiw,et al.  A symmetric positive definite formulation for monolithic fluid structure interaction , 2011, J. Comput. Phys..

[9]  David L. Hu,et al.  Water-walking devices , 2007 .

[10]  Eitan Grinspun,et al.  Surface-only liquids , 2016, ACM Trans. Graph..

[11]  Ying Wang,et al.  RedMax: efficient & flexible approach for articulated dynamics , 2019, ACM Trans. Graph..

[12]  E. Fried,et al.  Effect of a surface tension imbalance on a partly submerged cylinder , 2017, Journal of Fluid Mechanics.

[13]  S. Popinet Numerical Models of Surface Tension , 2018 .

[14]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[15]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[16]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[17]  Yi-Lu Chen,et al.  An extended cut-cell method for sub-grid liquids tracking with surface tension , 2020, ACM Trans. Graph..

[18]  Bo Zhu,et al.  Codimensional surface tension flow using moving-least-squares particles , 2020, ACM Trans. Graph..

[19]  Metin Sitti,et al.  Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[20]  Mridul Aanjaneya,et al.  An Efficient Solver for Two‐way Coupling Rigid Bodies with Incompressible Flow , 2018, Comput. Graph. Forum.

[21]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[22]  Ronald Fedkiw,et al.  Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid , 2012, J. Comput. Phys..

[23]  Jonas Latt,et al.  Toward Full GPU Implementation of Fluid-Structure Interaction , 2019, 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC).

[24]  M. Mayer,et al.  with boundary condition , 2022 .

[25]  Ronald Fedkiw,et al.  Accurate Tangential Velocities For Solid Fluid Coupling , 2009 .

[26]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[27]  NiyogiPartha,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2008 .

[28]  G. Turk,et al.  Water drops on surfaces , 2005, SIGGRAPH 2005.

[29]  Nicholas J. Weidner,et al.  RedMax , 2019, ACM Transactions on Graphics.

[30]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[31]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[32]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[33]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[34]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[35]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[36]  James F. O'Brien,et al.  Simultaneous coupling of fluids and deformable bodies , 2006, SCA '06.

[37]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[38]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[39]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[40]  Han Wang,et al.  STRIDE II: A Water Strider-inspired Miniature Robot with Circular Footpads , 2014 .

[41]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[42]  R. Fitzpatrick Theoretical Fluid Mechanics , 2018 .

[43]  Huamin Wang,et al.  Water drops on surfaces , 2005, ACM Trans. Graph..

[44]  Metin Sitti,et al.  Biologically Inspired Miniature Water Strider Robot , 2005, Robotics: Science and Systems.

[45]  Toshiya Hachisuka,et al.  A hyperbolic geometric flow for evolving films and foams , 2017, ACM Trans. Graph..

[46]  Ronald Fedkiw,et al.  A unified approach to monolithic solid-fluid coupling of sub-grid and more resolved solids , 2019, J. Comput. Phys..

[47]  Jean-Michel Dischler,et al.  Simulating Fluid-Solid Interaction , 2003, Graphics Interface.

[48]  G. Navascués,et al.  Liquid surfaces: theory of surface tension , 1979 .

[49]  Omar Zarifi,et al.  A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies , 2017, Symposium on Computer Animation.

[50]  Steven J. Ruuth,et al.  A localized meshless method for diffusion on folded surfaces , 2015, J. Comput. Phys..

[51]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[52]  Huamin Wang,et al.  A Deformable Surface Model for Real-Time Water Drop Animation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[53]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[54]  ALLAN FERGUSON,et al.  Surface Tension* , 1934, Nature.