Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide.

We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide controlled through thermo-optic effect. The effective footprint of the device is about 1000 x 500 microm(2). The minimum insertion loss is about 10.7 dB and the tuning bandwidth about 17 nm. The average tuning power efficiency is about 6.187 mW/nm and the tuning speed about 24.4 kHz. The thermo-optic polarization-rotation effect is firstly reported in this paper.

[1]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[2]  Seng-Tiong Ho,et al.  FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators , 1997 .

[3]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[4]  Nabeel A. Riza,et al.  Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches , 1999 .

[5]  S. Chu,et al.  Filter synthesis for periodically coupled microring resonators. , 2000, Optics letters.

[6]  L.Y. Lin,et al.  Client-configurable eight-channel optical add/drop multiplexer using micromachining technology , 2000, IEEE Photonics Technology Letters.

[7]  L.Y. Lin,et al.  Micromachined integrated optical polarization-state rotator , 2000, IEEE Photonics Technology Letters.

[8]  L C Kimerling,et al.  Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.

[9]  An Vu Tran,et al.  Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings , 2001, IEEE Photonics Technology Letters.

[10]  T. Tsuchizawa,et al.  Low loss mode size converter from 0.3 /spl mu/m square Si wire waveguides to singlemode fibres , 2002 .

[11]  T. Watanabe,et al.  Fabrication and evaluation of submicron-square Si wire waveguides with spot size converters , 2002, The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[12]  Mario Martinelli,et al.  Synthesis of direct-coupled-resonators bandpass filters for WDM systems , 2002 .

[13]  W. Chen,et al.  Monolithically integrated 32-channel client re-configurable optical add/drop multiplexer on planar lightwave circuit , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[14]  Wei Wang,et al.  Multimode-interference-type thermo-optic variable optical attenuator with a response frequency of 10 kHz , 2003 .

[15]  Vincent Wiaux,et al.  Large-scale production techniques for photonic nanostructures , 2003, SPIE Optics + Photonics.

[16]  Wenlu Chen,et al.  Monolithically integrated 32 /spl times/ four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit , 2003, IEEE Photonics Technology Letters.

[17]  A characteristic matrix approach for analyzing resonant ring lattice devices , 2004, IEEE Photonics Technology Letters.

[18]  Jun-ichi Takahashi,et al.  Microphotonics Devices Based on Silicon Wire Waveguiding System (INVITED) , 2004 .

[19]  S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section , 2004, IEEE Antennas and Wireless Propagation Letters.

[20]  Toshihiko Baba,et al.  Low Loss Intersection of Si Photonic Wire Waveguides , 2004 .

[21]  J. Scheuer,et al.  Matrix analysis of microring coupled-resonator optical waveguides. , 2004, Optics express.

[22]  Michal Lipson,et al.  Switching and modulating light on silicon , 2005, SPIE OPTO.

[23]  R. Soref,et al.  Synthesis of dual-microring-resonator cross-connect filters. , 2005, Optics express.

[24]  J.B.D. Soole,et al.  Reconfigurable optical add-drop multiplexer (ROADM) with integrated sub-band optical cross-connect , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[25]  T. Shoji,et al.  Microphotonics devices based on silicon microfabrication technology , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  A. Driessen,et al.  Reconfigurable optical add-drop multiplexer using microring resonators , 2005, IEEE Photonics Technology Letters.

[27]  Michal Lipson,et al.  Ultrafast all-optical modulation on a silicon chip. , 2005, Optics letters.

[28]  E. Laskowski,et al.  Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[30]  Vincent Wiaux,et al.  Silicon-on-insulator nanophotonics , 2005, SPIE Optics + Optoelectronics.

[31]  Otto Schwelb,et al.  Crosstalk and bandwidth of lossy microring add/drop multiplexers , 2006 .

[32]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Fengnian Xia,et al.  Compact Wavelength Multiplexers/Semultiplexers using Photonic Wires on Silicon-on-Insulator (SOI) Substrate , 2006, 2006 International Conference on Indium Phosphide and Related Materials Conference Proceedings.

[34]  F. Xia,et al.  Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. , 2007, Optics express.

[35]  S. Xiao,et al.  Multiple-channel silicon micro-resonator based filters for WDM applications. , 2007, Optics express.

[36]  P. Dumon,et al.  Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. , 2007, Optics letters.

[37]  Henry I. Smith,et al.  Polarization-transparent microphotonic devices in the strong confinement limit , 2007 .

[38]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[39]  Sharee J. McNab,et al.  Ultra-compact optical buffers on a silicon chip , 2007 .

[40]  Minghao Qi,et al.  A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. , 2007, Optics express.

[41]  F. Gan,et al.  Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures , 2007, 2007 Photonics in Switching.

[42]  Roberto R. Panepucci,et al.  1 4 Wavelength Reconfigurable Photonic Switch Using Thermally Tuned Microring Resonators Fabricated on Silicon Substrate , 2007 .

[43]  P. Galli,et al.  Silicon on Insulator Based Integrated Tunable Add & Drop Filter for Metro DWDM Networks , 2007, 2007 9th International Conference on Transparent Optical Networks.

[44]  Yasuhiko Arakawa,et al.  Silicon photonic-wire waveguide devices , 2007, SPIE OPTO.

[45]  Yung-Jui Chen,et al.  A Compact and Low Power Consumption Optical Switch Based on Microrings , 2008, IEEE Photonics Technology Letters.

[46]  Tymon Barwicz,et al.  Reconfigurable silicon photonic circuits for telecommunication applications , 2008, SPIE LASE.

[47]  Tsutomu Kitoh,et al.  Port Scalable PLC-Based Wavelength Selective Switch with Low Extension Loss for Multi-Degree ROADM/WXC , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[49]  Budi Juswardy,et al.  Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors. , 2008, Optics express.

[50]  Katsuyuki Sakuma,et al.  Three-dimensional silicon integration , 2008, IBM J. Res. Dev..

[52]  A. Poon,et al.  Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings. , 2008, Optics express.

[53]  F. Xia,et al.  High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks , 2008 .

[54]  Robert Schleicher,et al.  MEMS Based Channelized ROADM Platform , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[55]  Simon Poole,et al.  LCOS-based WSS with true integrated channel monitor for signal quality monitoring applications in ROADMs , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[56]  L.A. Coldren Silicon photonics for next generation computing systems , 2008, 2008 34th European Conference on Optical Communication.