Improved learning of Riemannian metrics for exploratory analysis [Neural Networks 17 (8–9) 1087–1100]

[1]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[2]  L. Devroye,et al.  Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function Estimation , 1980 .

[3]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[4]  Jorma Laaksonen,et al.  LVQPAK: A software package for the correct application of Learning Vector Quantization algorithms , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[5]  T. Kohonen,et al.  Appendix 2.4 Stopping Rule 2.3 Fine Tuning Using the Basic Lvq1 or Lvq2.1 Lvq Pak: a Program Package for the Correct Application of Learning Vector Quantization Algorithms , 1992 .

[6]  Bart Kosko,et al.  Neural networks for signal processing , 1992 .

[7]  Suzanna Becker,et al.  Mutual information maximization: models of cortical self-organization. , 1996, Network.

[8]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[9]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[10]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[11]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[12]  Erkki Oja,et al.  Kohonen Maps , 1999, Encyclopedia of Machine Learning.

[13]  T. Heskes Energy functions for self-organizing maps , 1999 .

[14]  Magnus Rattray,et al.  A model-based distance for clustering , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[15]  Trevor Hastie,et al.  Flexible discriminant and mixture models , 2000 .

[16]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[17]  Samuel Kaski,et al.  Bankruptcy analysis with self-organizing maps in learning metrics , 2001, IEEE Trans. Neural Networks.

[18]  Samuel Kaski,et al.  Clustering Based on Conditional Distributions in an Auxiliary Space , 2002, Neural Computation.

[19]  A. Orth,et al.  Large-scale analysis of the human and mouse transcriptomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Gunnar Rätsch,et al.  A New Discriminative Kernel from Probabilistic Models , 2001, Neural Computation.

[21]  Thomas Villmann,et al.  Generalized relevance learning vector quantization , 2002, Neural Networks.

[22]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[23]  Kari Torkkola,et al.  Feature Extraction by Non-Parametric Mutual Information Maximization , 2003, J. Mach. Learn. Res..

[24]  Samuel Kaski,et al.  Regularized discriminative clustering , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[25]  Samuel Kaski,et al.  Informative Discriminant Analysis , 2003, ICML.

[26]  Samuel Kaski,et al.  Principle of Learning Metrics for Data Analysis , 2004 .

[27]  Samuel Kaski,et al.  Principle of Learning Metrics for Exploratory Data Analysis , 2004, J. VLSI Signal Process..

[28]  Naftali Tishby,et al.  Multivariate Information Bottleneck , 2001, Neural Computation.

[29]  M. V. Velzen,et al.  Self-organizing maps , 2007 .