Plasmonic coupling between a metallic nanosphere and a thin metallic wire

Using the plasmon hybridization method the authors examine light-induced coupling between the localized plasmons of a metallic nanosphere and the propagating plasmons of an infinite metallic wire. The plasmon resonances of the coupled system are found to be shifted in frequency relative to the plasmonic structure of the isolated nanoparticles. The magnitude of the shifts depends on the polarization of the incident light and the system geometry. In the limit of a thin wire, it is shown that the nanosphere can serve as an efficient nanoantenna which can couple incident electromagnetic radiation into low-energy propagating wire plasmons.

[1]  N J Halas,et al.  Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. , 2005, Nano letters.

[2]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[3]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[4]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[6]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[7]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[8]  Kanglin Wang,et al.  Enhanced coupling of terahertz radiation to cylindrical wire waveguides. , 2006, Optics express.

[9]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[10]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[11]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[12]  Lewis J. Rothberg,et al.  The structural basis for giant enhancement enabling single-molecule Raman scattering , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[15]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[16]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[17]  M. Moskovits,et al.  Engineering nanostructures for giant optical fields , 2004 .

[18]  Stefan A. Maier,et al.  Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing , 2004 .