SLAM for autonomous planetary rovers with global localization

[1]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[2]  Antonios Gasteratos,et al.  SPARTAN system: Towards a low-cost and high-performance vision architecture for space exploratory rovers , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[3]  Manolis I. A. Lourakis,et al.  SPARTAN/SEXTANT/COMPASS: Advancing Space Rover Vision via Reconfigurable Platforms , 2015, ARC.

[4]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[5]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[6]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[7]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[8]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[9]  Gianfranco Visentin,et al.  The Katwijk beach planetary rover dataset , 2018, Int. J. Robotics Res..

[10]  Antonios Gasteratos,et al.  Stereo-Based Visual Odometry for Autonomous Robot Navigation , 2016 .

[11]  Timothy D. Barfoot,et al.  Three‐dimensional SLAM for mapping planetary work site environments , 2012, J. Field Robotics.

[12]  Antonios Gasteratos,et al.  Fast loop-closure detection using visual-word-vectors from image sequences , 2018, Int. J. Robotics Res..

[13]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Dimitrios Soudris,et al.  SPARTAN: Developing a Vision System for Future Autonomous Space Exploration Robots , 2014, J. Field Robotics.

[15]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  Gianfranco Visentin,et al.  Introducing a globally consistent orbital‐based localization system , 2018, J. Field Robotics.

[17]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[18]  Debra F. Laefer,et al.  Point Cloud Data Conversion into Solid Models via Point-Based Voxelization , 2013 .

[19]  Frank Kirchner,et al.  Adaptive localization and mapping with application to planetary rovers , 2018, J. Field Robotics.

[20]  Frank Kirchner,et al.  Gaussian process estimation of odometry errors for localization and mapping , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Tim D. Barfoot,et al.  Online visual motion estimation using FastSLAM with SIFT features , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Gianfranco Visentin,et al.  Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover , 2017, Astrobiology.

[23]  Eric Krotkov,et al.  Outdoor Visual Position Estimation for Planetary Rovers , 2000, Auton. Robots.

[24]  Sébastien Clerc,et al.  Development of the European IMU for Space Applications , 2009 .

[25]  Sebastian Thrun,et al.  Simultaneous localization and mapping with unknown data association using FastSLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[26]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[27]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[28]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[29]  Emily Eelkema,et al.  Mars Exploration Rovers , 2004 .

[30]  Kaichang Di,et al.  INTEGRATION OF ORBITAL AND GROUND IMAGE NETWORKS FOR THE AUTOMATION OF ROVER LOCALIZATION , 2009 .

[31]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[32]  Tim D. Barfoot,et al.  3D SLAM for planetary worksite mapping , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  R. Siegwart,et al.  ROBOT-CENTRIC ELEVATION MAPPING WITH UNCERTAINTY ESTIMATES , 2014 .

[34]  Larry H. Matthies,et al.  Rock modeling and matching for autonomous long‐range Mars rover localization , 2007, J. Field Robotics.

[35]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[36]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[37]  Mark Woods,et al.  Seeker—Autonomous Long‐range Rover Navigation for Remote Exploration , 2014, J. Field Robotics.

[38]  Enrico Ferrentino,et al.  Mars rovers localization by matching local horizon to surface digital elevation models , 2017, 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).

[39]  Iraklis Anagnostopoulos,et al.  SPARTAN project: Efficient implementation of computer vision algorithms onto reconfigurable platform targeting to space applications , 2011, 6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC).

[40]  Jonathan M. Garibaldi,et al.  Real-Time Correlation-Based Stereo Vision with Reduced Border Errors , 2002, International Journal of Computer Vision.

[41]  Wai-Kiang Yeap,et al.  Robotics and Cognitive Approaches to Spatial Mapping , 2010, Springer Tracts in Advanced Robotics.