Self-consistent modelling of Mercury's exosphere by sputtering, micro- meteorite impact and photon-stimulated desorption

Abstract A Monte-Carlo model of exospheres ( Wurz and Lammer, 2003 ) was extended by treating the ion-induced sputtering process, photon-stimulated desorption, and micro-meteorite impact vaporisation quantitatively in a self-consistent way starting with the actual release of particles from the mineral surface of Mercury. Based on available literature data we established a global model for the surface mineralogy of Mercury and from that derived the average elemental composition of the surface. This model serves as a tool to estimate densities of species in the exosphere depending on the release mechanism and the associated physical parameters quantitatively describing the particle release from the surface. Our calculation shows that the total contribution to the exospheric density at the Hermean surface by solar wind sputtering is about 4×10 7  m –3 , which is much less than the experimental upper limit of the exospheric density of 10 12  m –3 . The total calculated exospheric density from micro-meteorite impact vaporisation is about 1.6×10 8  m –3 , also much less than the observed value. We conclude that solar wind sputtering and micro-meteorite impact vaporisation contribute only a small fraction of Mercury’s exosphere, at least close to the surface. Because of the considerably larger scale height of atoms released via sputtering into the exosphere, sputtered atoms start to dominate the exosphere at altitudes exceeding around 1000 km, with the exception of some light and abundant species released thermally, e.g. H 2 and He. Because of Mercury’s strong gravitational field not all particles released by sputtering and micro-meteorite impact escape. Over extended time scales this will lead to an alteration of the surface composition.

[1]  A. Potter,et al.  Evidence for Magnetospheric Effects on the Sodium Atmosphere of Mercury , 1990, Science.

[2]  T. H. Morgan,et al.  Ratio of sodium to potassium in the Mercury exosphere , 2002 .

[3]  Maxim L. Khodachenko,et al.  Processes that Promote and Deplete the Exosphere of Mercury , 2007 .

[4]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[5]  F. Leblanc,et al.  Mercury's sodium exosphere: Magnetospheric ion recycling , 2003 .

[6]  Maxim L. Khodachenko,et al.  The sodium exosphere of Mercury: Comparison between observations during Mercury's transit and model results , 2009 .

[7]  James A. Slavin,et al.  The effect of erosion on the solar wind stand-off distance at Mercury , 1979 .

[8]  R. Killen,et al.  Spatial distribution of sodium vapor in the atmosphere of Mercury , 1990 .

[9]  Johan Warell,et al.  Mercury’s Surface Composition and Character as Measured by Ground-Based Observations , 2007 .

[10]  G. Betz,et al.  Sputtering by particle bombardment , 1983 .

[11]  Mark S. Robinson,et al.  The Evolution of Mercury’s Crust: A Global Perspective from MESSENGER , 2009, Science.

[12]  P. Esposito,et al.  The occultation of Mariner 10 by Mercury , 1976 .

[13]  S. Solomon,et al.  Mercury's Exosphere: Observations During MESSENGER's First Mercury Flyby , 2008, Science.

[14]  F. Aumayr,et al.  Potential sputtering , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Thomas A. Bida,et al.  The calcium exosphere of Mercury , 2005 .

[16]  J. Geiss,et al.  Trapping of the solar wind in solids: Part I. Trapping probability of low energy He, Ne and Ar ions , 1966 .

[17]  S. Murchie,et al.  Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby , 2008, Science.

[18]  W. Husinsky,et al.  Doppler shift laser fluorescence spectroscopy of sputtered and evaporated atoms under Ar+ bombardment , 1985 .

[19]  R. Killen,et al.  Rapid changes in the sodium exosphere of Mercury , 1999 .

[20]  J W Morgan,et al.  Chemical composition of Earth, Venus, and Mercury. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Helmut Lammer,et al.  Mapping of the cusp plasma precipitation on the surface of Mercury , 2003 .

[22]  Robert E. Johnson,et al.  Monte Carlo model of sputtering and other ejection processes within a regolith , 2005 .

[23]  V. Pawlowsky-Glahn,et al.  Dealing with Zeros and Missing Values in Compositional Data Sets Using Nonparametric Imputation , 2003 .

[24]  T. Berkefeld,et al.  Detection of neutral sodium above Mercury during the transit on 2003 May 7 , 2004 .

[25]  R. Manka,et al.  Lunar Atmosphere as a Source of Argon-40 and Other Lunar Surface Elements , 1970, Science.

[26]  K. Ogilvie,et al.  Solar wind composition , 1995 .

[27]  F. Leblanc,et al.  Energy Distributions for Desorption of Sodium and Potassium from Ice: The Na/K Ratio at Europa , 2002 .

[28]  M.M.R. Williams,et al.  The stopping and ranges of ions in matter , 1978 .

[29]  G. Cremonese,et al.  Corrigendum to “Release of neutral sodium atoms from the surface of Mercury induced by meteoroid impacts” [Icarus 177 (2005) 122 128] , 2006 .

[30]  A. Potter Chemical sputtering could produce sodium vapor and ice on Mercury , 1995 .

[31]  Pekka Janhunen,et al.  Solar wind and magnetospheric ion impact on Mercury's surface , 2003 .

[32]  N. Stolterfoht,et al.  Kinetically assisted potential sputtering of insulators by highly charged ions. , 2001, Physical review letters.

[33]  Paul G. Lucey,et al.  A Comparison of Mercurian Reflectance and Spectral Quantities with Those of the Moon , 1997 .

[34]  G. Wehner,et al.  Sputtering of multicomponent materials , 1983, Third Topical Meeting on Optical Interference Coatings.

[35]  U. Rohner,et al.  The lunar exosphere: The sputtering contribution , 2007 .

[36]  G. Cremonese,et al.  Release of neutral sodium atoms from the surface of Mercury induced by meteoroid impacts , 2005 .

[37]  William E. McClintock,et al.  MESSENGER Observations of Mercury’s Exosphere: Detection of Magnesium and Distribution of Constituents , 2009, Science.

[38]  W. Smyth,et al.  The Sodium and Potassium Atmospheres of the Moon , 1995 .

[39]  J. Warell,et al.  Properties of the hermean regolith: iii. disk-resolved vis-NIR reflectance spectra and implications for the abundance of iron* , 2003 .

[40]  Kenneth G. Powell,et al.  Interaction of Mercury with the Solar Wind , 1998 .

[41]  W. Huebner,et al.  Solar photo rates for planetary atmospheres and atmospheric pollutants , 1984 .

[42]  A. Hamza,et al.  Interaction of slow, very highly charged ions with surfaces , 1999 .

[43]  D. Mitchell,et al.  Microwave Imaging of Mercury's Thermal Emission at Wavelengths from 0.3 to 20.5 cm , 1994 .

[44]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[45]  N. Schneider,et al.  Short‐term variations of Mercury's Na exosphere observed with very high spectral resolution , 2009 .

[46]  Donald M. Hunten,et al.  Sulfur at Mercury, Elemental at the Poles and Sulfides in the Regolith , 1995 .

[47]  Mark J. Cintala,et al.  Impact‐induced thermal effects in the lunar and Mercurian regoliths , 1992 .

[48]  D. Hunten,et al.  An Upper Limit on Neutral Calcium in Mercury's Atmosphere , 1993 .

[49]  G. Gloeckler,et al.  MESSENGER Observations of the Composition of Mercury's Ionized Exosphere and Plasma Environment , 2008, Science.

[50]  A. Potter,et al.  Impact-driven supply of sodium and potassium to the atmosphere of Mercury , 1987 .

[51]  D. Shemansky The role of solar wind heavy ions in the space environment , 2003 .

[52]  M. Slade,et al.  Radar Mapping of Mercury: Full-Disk Images and Polar Anomalies , 1992, Science.

[53]  Theodore E. Madey,et al.  Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon , 1998 .

[54]  M. W. Thompson,et al.  I. A mechanical spectrometer for analysing the energy distribution of sputtered atoms of copper or gold , 1968 .

[55]  Johan Warell,et al.  Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling , 2004 .

[56]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[57]  A. Milillo,et al.  Dayside H+ circulation at Mercury and neutral particle emission , 2005 .

[58]  P. Wurz,et al.  The Fe/O elemental abundance ratio in the solar wind as observed with SOHO CELIAS CTOF , 1999 .

[59]  Thomas A. Bida,et al.  Discovery of calcium in Mercury's atmosphere , 2000, Nature.

[60]  Robert E. Johnson,et al.  Ultraviolet photodesorption from water ice , 1995 .

[61]  S. Murchie,et al.  Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances , 2008 .

[62]  W. O. Hofer,et al.  Angular, energy, and mass distribution of sputtered particles , 1991 .

[63]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[64]  Uwe Fink,et al.  Distribution and Abundance of Sodium in Mercury's Atmosphere, 1985–1988 , 1997 .

[65]  R. Killen,et al.  Solar radiation acceleration effects on Mercury sodium emission , 2006 .

[66]  A. Mililloa,et al.  The BepiColombo mission: An outstanding tool for investigating the Hermean environment , 2009 .

[67]  J. A. Mart,et al.  Some Practical Aspects on Multidimensional Scaling of Compositional Data 1 Some Practical Aspects on Multidimensional Scaling of Compositional Data , 2001 .

[68]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[69]  Thomas E. Moore,et al.  A quantitative model of the planetary Na + contribution to Mercury’s magnetosphere , 2003 .

[70]  S. Kameda,et al.  Time variation in exospheric sodium density on Mercury , 2007 .

[71]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[72]  Helmut Lammer,et al.  Surface-Exosphere-Magnetosphere System Of Mercury , 2005 .

[73]  J. Biersack,et al.  Sputtering studies with the Monte Carlo Program TRIM.SP , 1984 .

[74]  R. M. Lark,et al.  Compositional Data Analysis in the Geosciences: from Theory to Practice , 2008 .

[75]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[76]  A. L. Broadfoot,et al.  Mariner 10 - Mercury atmosphere , 1976 .

[77]  Helmut Lammer,et al.  Monte-Carlo simulation of Mercury's exosphere , 2003 .

[78]  T. Hill,et al.  A Bx-interconnected magnetosphere model for Mercury , 2001 .

[79]  Andrew Steele,et al.  Nominally hydrous magmatism on the Moon , 2010, Proceedings of the National Academy of Sciences.

[80]  Santiago Thió i Fernández de Henestrosa,et al.  The chemical variability at the surface of Mars: implications for exogenic processes , 2005 .

[81]  A. Milillo,et al.  The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere , 2007 .

[82]  A. Arnau,et al.  Interaction of slow multicharged ions with solid surfaces , 1997 .

[83]  T. Madey,et al.  Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere , 1999, Nature.

[84]  G. Siscoe,et al.  Variations in the solar wind stand‐off distance at Mercury , 1975 .

[85]  Alessandro Frigeri,et al.  Mercury's surface and composition to be studied by BepiColombo , 2010 .

[86]  David K. Lynch,et al.  Mercury: Mid‐infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene , 2002 .

[87]  Manish R. Patel,et al.  The variability of Mercury's exosphere by particle and radiation induced surface release processes , 2003 .

[88]  Johan Warell,et al.  Spectral emissivity measurements of Mercury's surface indicate Mg- and Ca-rich mineralogy, K-spar, Na-rich plagioclase, rutile, with possible perovskite, and garnet , 2009 .

[89]  B. Fegley,et al.  A vaporization model for iron/silicate fractionation in the Mercury protoplanet , 1987 .

[90]  A. Sprague,et al.  Mercury: Evidence for Anorthosite and Basalt from Mid-infrared (7.3-13.5 μm) Spectroscopy , 1994 .

[91]  Ichiro Yoshikawa,et al.  Interplanetary dust distribution and temporal variability of Mercury's atmospheric Na , 2009 .

[92]  A. Potter,et al.  Evidence for suprathermal sodium on Mercury , 1997 .

[93]  Johan Warell,et al.  The 0.7–5.3 μm IR spectra of Mercury and the Moon: Evidence for high-Ca clinopyroxene on Mercury , 2006 .

[94]  John Aitchison,et al.  Log-ratios and geochemical discrimination of Scottish Dalradian limestones: a case study , 2006, Geological Society Special Publication.

[95]  Josep Antoni Martín-Fernández,et al.  Rounded zeros: some practical aspects for compositional data , 2006, Geological Society, London, Special Publications.

[96]  Rosemary M. Killen,et al.  The surface‐bounded atmospheres of Mercury and the Moon , 1999 .

[97]  G. Mateu-Figueras,et al.  Compositional Data Analysis in the Geosciences: From Theory to Practice , 2006 .

[98]  F. Marzari,et al.  Statistical analysis of micrometeoroids flux on Mercury , 2009 .

[99]  A. Potter,et al.  Sodium and potassium atmospheres of Mercury , 1997 .

[100]  Y. Langevin The regolith of Mercury: present knowledge and implications for the Mercury Orbiter mission , 1997 .

[101]  J. Geiss,et al.  Solar wind composition experiment. , 1970 .

[102]  Gretchen Benedix,et al.  Spectra of extremely reduced assemblages: Implications for Mercury , 2002 .

[103]  S. Shen,et al.  The statistical analysis of compositional data , 1983 .

[104]  A. Fitzsimmons,et al.  Sodium D2 line profiles: clues to the temperature structure of Mercury’s exosphere , 1999 .

[105]  W. M. Kaula,et al.  Basaltic volcanism on the terrestrial planets. , 1977 .

[106]  A. Mililloa,et al.  SERENA : A suite of four instruments ( ELENA , STROFIO , PICAM and MIPA ) on board BepiColombo-MPO for particle detection in the Hermean environment , 2009 .

[107]  T. H. Morgan,et al.  Potassium in the atmosphere of Mercury , 1986 .

[108]  Theodore E. Madey,et al.  THERMAL DESORPTION OF SODIUM ATOMS FROM THIN SiO2 Films , 2000 .

[109]  Donald M. Hunten,et al.  The Mercury atmosphere , 1988 .

[110]  Paul G. Lucey,et al.  Lunar pure anorthosite as a spectral analog for Mercury , 2002 .

[111]  N. Mcbride,et al.  Estimation of the dust flux near Mercury , 2002 .

[112]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .