Passification of nonsquare linear systems

Necessary and sufficient conditions for feedback passivity (passifiablity) of nonsquare linear systems published in Russian and Western literature are surveyed. New output G-passifiability conditions for nonsquare linear systems are given. The proofs are based on Yakubovich-Kalman-Popov (Kalman-Yakubovich) lemma.

[1]  Alexander L. Fradkov,et al.  Necessary and sufficient conditions for almost strict positive realness and their application to direct implicit adaptive control systems , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[2]  A. L. Fradkov Quadratic Lyapunov functions in the adaptive stability problem of a linear dynamic target , 1976 .

[3]  Howard Kaufman,et al.  Direct Adaptive Control Algorithms , 1998 .

[4]  David J. Hill,et al.  Exponential Feedback Passivity and Stabilizability of Nonlinear Systems , 1998, Autom..

[5]  Jason L. Speyer,et al.  System characterization of positive real conditions , 1994, IEEE Trans. Autom. Control..

[6]  Petros A. Ioannou,et al.  Design of strictly positive real systems using constant output feedback , 1999, IEEE Trans. Autom. Control..

[7]  P. Khargonekar,et al.  Solution to the positive real control problem for linear time-invariant systems , 1994, IEEE Trans. Autom. Control..

[8]  P. Dorato,et al.  SPR Design using Feedback , 1991, 1991 American Control Conference.

[9]  Ali Saberi,et al.  Squaring down by static and dynamic compensators , 1988 .

[10]  T. Başar The Solution of Certain Matrix Inequalities in Automatic Control Theory , 2001 .

[11]  Alexander L. Fradkov,et al.  Adaptive synchronization of chaotic systems based on speed gradient method and passification , 1997 .

[12]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[13]  G. Gu Stabilizability conditions of multivariable uncertain systems via output feedback control , 1990 .

[14]  Henk Nijmeijer,et al.  c ○ World Scientific Publishing Company ADAPTIVE OBSERVER-BASED SYNCHRONIZATION FOR COMMUNICATION , 1999 .

[15]  H. Kaufman,et al.  Implicit Adaptive Control for a Class of MIMO Systems , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[16]  A. Steinberg A sufficient condition for output feedback stabilization of uncertain dynamical systems , 1988 .

[17]  Alexander L. Fradkov,et al.  Feedback Kalman-Yakubovich lemma and its applications to adaptive control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[18]  Alexander L. Fradkov,et al.  Nonlinear and Adaptive Control of Complex Systems , 1999 .

[19]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[20]  David J. Hill,et al.  Adaptive passification of nonlinear systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  P. Kokotovic,et al.  A positive real condition for global stabilization of nonlinear systems , 1989 .

[22]  P. Kokotovic,et al.  Global stabilization of partially linear composite systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[23]  Ezra Zeheb,et al.  A sufficient condition of output feedback stabilization of uncertain systems , 1986 .