Maximum Principle for Quasi-linear Backward Stochastic Partial Differential Equations

Abstract In this paper we are concerned with the maximum principle for quasi-linear backward stochastic partial differential equations (BSPDEs for short) of parabolic type. We first prove the existence and uniqueness of the weak solution to quasi-linear BSPDEs with the null Dirichlet condition on the lateral boundary. Then using the De Giorgi iteration scheme, we establish the maximum estimates and the global maximum principle for quasi-linear BSPDEs. To study the local regularity of weak solutions, we also prove a local maximum principle for the backward stochastic parabolic De Giorgi class.

[1]  Ying Hu,et al.  Adapted solution of a backward semilinear stochastic evolution equation , 1991 .

[2]  Avner Friedman,et al.  Partial differential equations , 1969 .

[3]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[4]  Shanjian Tang,et al.  On Backward Doubly Stochastic Differential Evolutionary System , 2013 .

[5]  On the Dirichlet Problem for Backward Parabolic Stochastic Partial Differential Equations in General Smooth Domains , 2009, 0910.2289.

[6]  Shige Peng,et al.  Stochastic Hamilton-Jacobi-Bellman equations , 1992 .

[7]  E. Pardouxt,et al.  Stochastic partial differential equations and filtering of diffusion processes , 1980 .

[8]  Backward parabolic Ito equations and the second fundamental inequality , 2006, math/0606595.

[9]  Shanjian Tang,et al.  SEMI-LINEAR SYSTEMS OF BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN ℝn , 2005 .

[10]  Nikolaos Englezos,et al.  Utility Maximization with Habit Formation: Dynamic Programming and Stochastic PDEs , 2009, SIAM J. Control. Optim..

[11]  Alain Bensoussan,et al.  Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions , 1983 .

[12]  Anis Matoussi,et al.  Maximum Principle and Comparison Theorem for Quasi-linear Stochastic PDE's , 2009 .

[13]  Xun Yu Zhou,et al.  A duality analysis on stochastic partial differential equations , 1992 .

[14]  Bernard Delyon,et al.  L p solutions of Backward Stochastic Dierential Equations , 2003 .

[15]  Shanjian Tang,et al.  Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space , 2010, 1006.1171.

[16]  Shanjian Tang,et al.  The Maximum Principle for Partially Observed Optimal Control of Stochastic Differential Equations , 1998 .

[17]  L. Denis,et al.  Lp estimates for the uniform norm of solutions of quasilinear SPDE's , 2005 .

[18]  Harnack inequalities for functions in De Giorgi parabolic class , 1988 .

[19]  X. Zhou On the necessary conditions of optimal controls for stochastic partial differential equations , 1993 .

[20]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[21]  Bernard Delyon,et al.  Lp solutions of backward stochastic differential equations , 2003 .

[22]  Larry G. Epstein,et al.  Stochastic differential utility , 1992 .

[23]  Shanjian Tang,et al.  Strong solution of backward stochastic partial differential equations in C2 domains , 2010, 1006.2185.

[24]  J. Serrin,et al.  Local behavior of solutions of quasilinear parabolic equations , 1967 .

[25]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[26]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[27]  L. Denis,et al.  A General Analytical Result for Non-linear SPDE's and Applications , 2004 .

[28]  J. Yong,et al.  On semi-linear degenerate backward stochastic partial differential equations , 1999 .