Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding

[1]  Zhonghua Zhang,et al.  Vegetable biology and breeding in the genomics era , 2022, Science China Life Sciences.

[2]  E. Buckler,et al.  Prediction of evolutionary constraint by genomic annotations improves functional prioritization of genomic variants in maize , 2022, Genome Biology.

[3]  G. Bryan,et al.  Genome evolution and diversity of wild and cultivated potatoes , 2022, Nature.

[4]  Shizhong Xu,et al.  Graph pangenome captures missing heritability and empowers tomato breeding , 2022, Nature.

[5]  Jianzhi Zhang,et al.  Synonymous mutations in representative yeast genes are mostly strongly non-neutral , 2022, Nature.

[6]  C. Bachem,et al.  Genome architecture and tetrasomic inheritance of autotetraploid potato. , 2022, Molecular plant.

[7]  Michelle C. Stitzer,et al.  A multiple alignment workflow shows the effect of repeat masking and parameter tuning on alignment in plants , 2022, The plant genome.

[8]  Marie E. Bolger,et al.  A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity. , 2022, The Plant journal : for cell and molecular biology.

[9]  John T. Lovell,et al.  GENESPACE: syntenic pan-genome annotations for eukaryotes , 2022, bioRxiv.

[10]  G. Sablok,et al.  Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum , 2021, bioRxiv.

[11]  G. Bertorelle,et al.  Genetic load: genomic estimates and applications in non-model animals , 2022, Nature Reviews Genetics.

[12]  Sanwen Huang,et al.  The multi-omics basis of potato heterosis. , 2021, Journal of integrative plant biology.

[13]  Yuannian Jiao,et al.  The Physalis floridana genome provides insights into the biochemical and morphological evolution of Physalis fruits , 2021, Horticulture research.

[14]  Wang Zhiwei,et al.  The chromosome-based genome provides insights into the evolution in water spinach , 2021 .

[15]  Dawei Li,et al.  Genome design of hybrid potato , 2021, Cell.

[16]  B. Liu,et al.  Wolfberry genomes and the evolution of Lycium (Solanaceae) , 2021, Communications biology.

[17]  Peter J. Bradbury,et al.  Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize , 2021, Genome research.

[18]  M. Goel,et al.  Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar , 2021, Nature Genetics.

[19]  G. Giuliano,et al.  Improved genome assembly and pan‐genome provide key insights into eggplant domestication and breeding , 2021, The Plant journal : for cell and molecular biology.

[20]  Heng Li,et al.  Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm , 2021, Nature Methods.

[21]  A. Thompson,et al.  De novo genome assembly of Solanum sitiens reveals structural variation associated with drought and salinity tolerance , 2021, Bioinformatics.

[22]  Samuel B. Fernandes,et al.  Comparative evolutionary genetics of deleterious load in sorghum and maize , 2021, Nature Plants.

[23]  Silvio C. E. Tosatto,et al.  The InterPro protein families and domains database: 20 years on , 2020, Nucleic Acids Res..

[24]  Voichita D. Marinescu,et al.  Progressive Cactus is a multiple-genome aligner for the thousand-genome era , 2020, Nature.

[25]  C. Bachem,et al.  Haplotype-resolved genome analyses of a heterozygous diploid potato , 2020, Nature Genetics.

[26]  Yuannian Jiao,et al.  A Collinearity-incorporating Homology Inference Strategy for Connecting Emerging Assemblies in Triticeae Tribe as a Pilot Practice in the Plant Pangenomic Era. , 2020, Molecular plant.

[27]  Rebecca Serra Mari,et al.  Haplotype threading: accurate polyploid phasing from long reads , 2020, Genome Biology.

[28]  Jiming Jiang,et al.  Construction of a chromosome-scale long-read reference genome assembly for potato , 2020, GigaScience.

[29]  R. Visser,et al.  Solyntus, the New Highly Contiguous Reference Genome for Potato (Solanum tuberosum) , 2020, G3.

[30]  G. Anderson,et al.  Inferring the Genetic Basis of Sex Determination from the Genome of a Dioecious Nightshade , 2020, bioRxiv.

[31]  Palle Duun Rohde,et al.  qgg: an R package for large-scale quantitative genetic analyses. , 2019, Bioinformatics.

[32]  B. Payseur,et al.  Crossover Interference: Shedding Light on the Evolution of Recombination. , 2019, Annual review of genetics.

[33]  Kevin P. Smith,et al.  The Fate of Deleterious Variants in a Barley Genomic Prediction Population , 2019, Genetics.

[34]  Yuanda Lv,et al.  The population genetics of structural variants in grapevine domestication , 2019, Nature Plants.

[35]  M. Schatz,et al.  GenomeScope 2.0 and Smudgeplots: Reference-free profiling of polyploid genomes , 2019, bioRxiv.

[36]  Thomas Peterson,et al.  Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline , 2019, Genome Biology.

[37]  Michelle C. Stitzer,et al.  The Genomics of Selfing in Maize (Zea mays ssp. mays): Catching Purging in the Act , 2019, bioRxiv.

[38]  Jinbo Zhang,et al.  The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development , 2019, BMC Plant Biology.

[39]  E. Stokstad The new potato. , 2019, Science.

[40]  Xun Xu,et al.  Draft genome sequence of the Solanum aethiopicum provides insights into disease resistance, drought tolerance and the evolution of the genome , 2019, bioRxiv.

[41]  Sanwen Huang,et al.  The genetic basis of inbreeding depression in potato , 2019, Nature Genetics.

[42]  M. Peitsch,et al.  The impact of genome evolution on the allotetraploid Nicotiana rustica – an intriguing story of enhanced alkaloid production , 2018, BMC Genomics.

[43]  Jason G. Wallace,et al.  On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. , 2018, Annual review of genetics.

[44]  G. C. Yencho,et al.  Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement , 2018, Nature Communications.

[45]  James W. Clark,et al.  Whole-Genome Duplication and Plant Macroevolution. , 2018, Trends in plant science.

[46]  L. Bohs,et al.  Comparative transcriptomics and genomic patterns of discordance in Capsiceae (Solanaceae). , 2018, Molecular phylogenetics and evolution.

[47]  B. Gaut,et al.  Demography and its effects on genomic variation in crop domestication , 2018, Nature Plants.

[48]  L. Moyle,et al.  Genome Sequence of Jaltomata Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae , 2018, bioRxiv.

[49]  Peter J. Bradbury,et al.  Dysregulation of expression correlates with rare-allele burden and fitness loss in maize , 2018, Nature.

[50]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[51]  Justin C. Fay,et al.  Comparative Genomics Approaches Accurately Predict Deleterious Variants in Plants , 2017, G3: Genes, Genomes, Genetics.

[52]  Ryan W. Kim,et al.  New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication , 2017, Genome Biology.

[53]  E. M. Farré,et al.  Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato , 2017, Proceedings of the National Academy of Sciences.

[54]  Pirita Paajanen,et al.  A critical comparison of technologies for a plant genome sequencing project , 2017, bioRxiv.

[55]  Rita H. Mumm,et al.  Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize , 2016, bioRxiv.

[56]  K. Lohmueller,et al.  Gene expression drives the evolution of dominance , 2017, bioRxiv.

[57]  Martin Vingron,et al.  Haplotype-resolved sweet potato genome traces back its hexaploidization history , 2017, Nature Plants.

[58]  L. Mueller,et al.  A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency , 2017, BMC Genomics.

[59]  B. Gaut,et al.  Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication , 2017, Proceedings of the National Academy of Sciences.

[60]  E. Buckler,et al.  Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation , 2017, Nature Genetics.

[61]  Brook T. Moyers,et al.  Genetic costs of domestication and improvement , 2017, bioRxiv.

[62]  Haibao Tang,et al.  Wild tobacco genomes reveal the evolution of nicotine biosynthesis , 2017, Proceedings of the National Academy of Sciences.

[63]  J. Mallet,et al.  North Andean origin and diversification of the largest ithomiine butterfly genus , 2017, Scientific Reports.

[64]  M. Gandolfo,et al.  Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae , 2017, Science.

[65]  Y. Sakakibara,et al.  Genome sequence and analysis of the Japanese morning glory Ipomoea nil , 2016, Nature Communications.

[66]  B. Hayes,et al.  Improving Genetic Gain with Genomic Selection in Autotetraploid Potato , 2016, The plant genome.

[67]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[68]  Jiming Jiang,et al.  Reinventing potato as a diploid inbred line-based crop , 2016 .

[69]  Rémy Bruggmann,et al.  Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida , 2016, Nature Plants.

[70]  Stefan M. Edwards,et al.  Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster , 2016, Genetics.

[71]  Daisy E. Pagete An end-to-end assembly of the Aedes aegypti genome , 2016, 1605.04619.

[72]  Kathleen L Farquharson A Domain in the bHLH Transcription Factor DYT1 Is Critical for Anther Development[OPEN] , 2016, Plant Cell.

[73]  F. Thibaud-Nissen,et al.  Araport11: a complete reannotation of the Arabidopsis thaliana reference genome , 2016, bioRxiv.

[74]  Matthew W. Hahn,et al.  Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation , 2016, PLoS biology.

[75]  Katharina J. Hoff,et al.  BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS , 2016, Bioinform..

[76]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[77]  M. Frith,et al.  Split-alignment of genomes finds orthologies more accurately , 2015, Genome Biology.

[78]  A. Clark,et al.  Estimating the mutation load in human genomes , 2015, Nature Reviews Genetics.

[79]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[80]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[81]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[82]  D. Spooner,et al.  Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes , 2014, The Botanical Review.

[83]  Takayuki Tohge,et al.  The genome of the stress-tolerant wild tomato species Solanum pennellii , 2014, Nature Genetics.

[84]  Stefan A Rensing,et al.  Gene duplication as a driver of plant morphogenetic evolution. , 2014, Current opinion in plant biology.

[85]  Yeisoo Yu,et al.  Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species , 2014, Nature Genetics.

[86]  B. Hayes,et al.  Improving the analysis of low heritability complex traits for enhanced genetic gain in potato , 2014, Theoretical and Applied Genetics.

[87]  R. Olmstead,et al.  A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree , 2013, BMC Evolutionary Biology.

[88]  Yohannes Petros,et al.  Genetic variability and association between agronomic characters in some potato (Solanum tuberosum L.) genotypes in SNNPRS, Ethiopia , 2013 .

[89]  M. Calus,et al.  Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking , 2013, Genetics.

[90]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[91]  M. Peitsch,et al.  Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis , 2013, Genome Biology.

[92]  Aureliano Bombarely,et al.  A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. , 2012, Molecular plant-microbe interactions : MPMI.

[93]  J. Dekker,et al.  Hi-C: a comprehensive technique to capture the conformation of genomes. , 2012, Methods.

[94]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[95]  J. Miller,et al.  Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.

[96]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[97]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[98]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[99]  Edward S. Buckler,et al.  Crop genomics: advances and applications , 2011, Nature Reviews Genetics.

[100]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[101]  R. Visser,et al.  Towards F1 Hybrid Seed Potato Breeding , 2011, Potato Research.

[102]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[103]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[104]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[105]  Serafim Batzoglou,et al.  Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..

[106]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[107]  Lars Peter Hansen,et al.  Generalized method of moments estimation , 2010 .

[108]  D. Charlesworth,et al.  The genetics of inbreeding depression , 2009, Nature Reviews Genetics.

[109]  M. McMullen,et al.  Genetic Properties of the Maize Nested Association Mapping Population , 2009, Science.

[110]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[111]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[112]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[113]  P. Keightley,et al.  A Comparison of Models to Infer the Distribution of Fitness Effects of New Mutations , 2013, Genetics.

[114]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[115]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[116]  M. Borodovsky,et al.  Gene identification in novel eukaryotic genomes by self-training algorithm , 2005, Nucleic acids research.

[117]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[118]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints , 2005, Nucleic Acids Res..

[119]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[120]  A. Caballero,et al.  On the average coefficient of dominance of deleterious spontaneous mutations. , 2000, Genetics.

[121]  B. Charlesworth,et al.  The effects of spontaneous mutation on quantitative traits. II. Dominance of mutations with effects on life-history traits. , 1997, Genetical research.

[122]  S J Remington,et al.  Citrate synthase: structure, control, and mechanism. , 1986, Annual review of biophysics and biophysical chemistry.

[123]  J. Crow,et al.  Mutations affecting fitness in Drosophila populations. , 1977, Annual review of genetics.

[124]  W. G. Hill,et al.  The effect of linkage on limits to artificial selection. , 1966, Genetical research.

[125]  N. Morton,et al.  AN ESTIMATE OF THE MUTATIONAL DAMAGE IN MAN FROM DATA ON CONSANGUINEOUS MARRIAGES. , 1956, Proceedings of the National Academy of Sciences of the United States of America.