High temperature thermomechanical properties of a microcracked model refractory material: A silica-doped aluminium titanate

[1]  R. Hakkou,et al.  Characterization of a chiastolite-type andalusite: structure and physicochemical properties related to mullite transformation , 2022, Materials Research Express.

[2]  Yuanbo Zhang,et al.  Assessing magnesia effect on preparing refractory materials from ferrochromium slag , 2022, Ceramics International.

[3]  A. G. Tomba Martínez,et al.  Thermomechanical evaluation of MgO–C commercial bricks , 2021, Ceramics International.

[4]  P. Lourenço,et al.  Thermomechanical behaviour of refractory dry-stacked masonry walls under uniaxial compression , 2021 .

[5]  Xudong Luo,et al.  Sintering behavior and thermal shock resistance of aluminum titanate (Al2TiO5)-toughened MgO-based ceramics , 2021 .

[6]  Qin Shan,et al.  Influence of Cooling Rates on the Microstructure and Mechanical Properties of Aluminum Titanate Flexible Ceramic , 2021, Advanced Engineering Materials.

[7]  P. Rutkowski,et al.  Effect of microstructure on thermal and mechanical properties of solid solutions Al2TiO5 - MgTi2O5 , 2021 .

[8]  J. Szczerba,et al.  Influence of graphite content on fracture behavior of MgO–C refractories based on wedge splitting test with digital image correlation method and acoustic emission , 2021 .

[9]  M. Huger,et al.  Investigation of microstructure-property relantionships of magnesia-hercynite refractory composites by a refined digital image correlation technique , 2019, Journal of the European Ceramic Society.

[10]  M. Öveçoğlu,et al.  Thermomechanical properties of aluminium titanate (Al 2 TiO 5 )-reinforced forsterite (Mg 2 SiO 4 ) ceramic composites , 2018 .

[11]  A. Kovalevsky,et al.  Flexible design of cellular Al2TiO5 and Al2TiO5-Al2O3 composite monoliths by reactive firing , 2017 .

[12]  Doncieux Alexandra,et al.  Structural Basis for the Anisotropic Thermal Expansion of Aluminum Titanate,Al2TiO5,at Elevated Temperatures , 2017 .

[13]  L. A. Genova,et al.  Formation of Aluminum Titanate with Small Additions of MgO and SiO2 , 2016 .

[14]  Marc Huger,et al.  Influence of the thermal history on the mechanical properties of two alumina based castables , 2009 .

[15]  T. Chotard,et al.  Damage evaluation of two alumina refractory castables , 2009 .

[16]  A. Tsetsekou A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties , 2005 .

[17]  E. Tschegg,et al.  Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials , 1996 .

[18]  Y. Ohya,et al.  Measurement of crack volume due to thermal expansion anisotropy in aluminium titanate ceramics , 1996, Journal of Materials Science.

[19]  D. Hasselman,et al.  Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics , 1969 .

[20]  Qin Shan,et al.  The influence of different additives on microstructure and mechanical properties of aluminum titanate ceramics , 2021 .

[21]  T. Yoko,et al.  Effect of SiO 2 Addition on Thermal Properties of Al 2 TiO 3 Ceramics , 2015 .

[22]  W. Kingery,et al.  Factors Affecting Thermal Stress Resistance of Ceramic Materials , 1955 .