Investigation of some physical properties of Gd added Bi-2223 superconductors

[1]  A. Amira,et al.  Substitution of Sr2+ by Eu3+ in Bi-2201 ceramics, effects on structure and physical properties , 2010 .

[2]  M. Nursoy,et al.  Mechanical and Superconducting Properties of the Bi1.8Pb0.35Sr1.9Ca2.1Cu3Gd(subscript x)O(subscript y) System , 2009 .

[3]  O. Ozturk,et al.  The influence of Gd addition on microstructure and transport properties of Bi-2223 , 2008 .

[4]  M. Nursoy,et al.  Transport, microstructure and mechanical properties of Au diffusion-doped Bi-2223 superconductors , 2008 .

[5]  Jie Wanqi,et al.  Microhardness of Hg1−xMnxTe , 2007 .

[6]  O. Ozturk,et al.  Role of diffusion-annealing time on the mechanical properties of bulk Bi-2223 superconductors diffusion-doped with Au , 2007 .

[7]  M. Nursoy,et al.  Thermal expansion and Vickers hardness measurements on Bi1.6Pb0.4Sr2Ca2−xSmxCu3Oy superconductors , 2006 .

[8]  O. Uzun,et al.  An analysis of load-depth data in depth-sensing microindentation experiments for intermetallic MgB2 , 2006 .

[9]  A. Gençer,et al.  Effect of cooling rates on bare bulk and silver wrapped pellets of Bi-2223 superconductor , 2006 .

[10]  U. Syamaprasad,et al.  Enhanced critical current density in (Bi,Pb)-2223 superconductor by Nd addition in low percentages , 2005 .

[11]  M. Altunbas,et al.  Investigation of some physical properties of silver diffusion-doped YBa2Cu3O7−x superconductors , 2005 .

[12]  E. Yanmaz,et al.  Structural and physical properties of Sm-doped Bi1.6Pb0.4Sr2Ca2−xSmxCu3Oy superconductors , 2005 .

[13]  S. M. Khalil Role of rare-earth Ba2+ doping in governing the superconducting and mechanical characteristics of Bi–Sr–Ca–Cu–O , 2005 .

[14]  H. Miao,et al.  On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data , 2004 .

[15]  S. M. Khalil Effect of Y3+ substitution for Ca on the transport and mechanical properties of Bi2Sr2Ca1−xYxCu2O8+δ system , 2003 .

[16]  D. Stone,et al.  Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity , 2003 .

[17]  S. M. Khalil Enhancement of superconducting and mechanical properties in BSCCO with Pb additions , 2001 .

[18]  Jianghong Gong,et al.  Examination of the indentation size effect in low-load vickers hardness testing of ceramics , 1999 .

[19]  J. Gong,et al.  Analysis of the indentation size effect on the apparent hardness for ceramics , 1999 .

[20]  J. Gong,et al.  Description of the indentation size effect in hot-pressed silicon-nitride-based ceramics , 1998 .

[21]  G. F. Vander Voort,et al.  Microindentation hardness testing , 1998 .

[22]  J. Quinn,et al.  Indentation brittleness of ceramics: a fresh approach , 1997 .

[23]  M. Nagabhooshanam,et al.  Hardness and elastic moduli of Bi2−xPbxCa2Sr2Cu3Oy superconductors , 1994 .

[24]  M. Sergent,et al.  Superconducting and magnetic properties of Gd substituted 2:2:2:3 Bismuth cuprates (Bi1.7Pb0.3Sr2Ca2–xGdxCu3Oy) , 1994 .

[25]  R. Bradt,et al.  The microhardness indentation load/size effect in rutile and cassiterite single crystals , 1993, Journal of Materials Science.

[26]  K. N. Reddy,et al.  Microhardness Studies on BiCaSrCuO (2122) Superconducting Single Crystals and Pellets , 1991 .

[27]  I. Ardelean,et al.  EPR on Y-ceramics and Bi-vitroceramics doped with S state paramagnetic ions , 1989 .

[28]  H. Weiss On deriving vickers hardness from penetration depth , 1987 .

[29]  Brian R. Lawn,et al.  Elastic recovery at hardness indentations , 1981 .

[30]  E. G. Kendall,et al.  An analysis of Knoop microhardness , 1973 .