PROBABILISTIC MODELS OF STRUCTURES

[1]  Jacques Besson,et al.  Size and geometry effects on ductile rupture of notched bars in a C-Mn steel: experiments and modelling , 1997 .

[2]  Dominique Jeulin,et al.  Effective Complex Permittivity of Random Composites , 1997 .

[3]  Jacques Besson,et al.  Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effect , 1997 .

[4]  D. Jeulin,et al.  Mesoscopic Modeling of the Intergranular Structure of Y2O3 Doped Aluminium Nitride and Application to the Prediction of the Effective Thermal Conductivity , 1997 .

[5]  D. Jeulin,et al.  Advances in Theory and Applications of Random Sets: Proceedings of the International Symposium , 1997 .

[6]  Claire-Hélène Demarty,et al.  Study of the Contact Permeability between Rough Surfaces from Confocal Microscopy , 1996 .

[7]  D. Jeulin,et al.  Fracture statistics of a unidirectional composite , 1995 .

[8]  D. Jeulin,et al.  RANDOM STRUCTURE MODELS FOR COMPOSITE MEDIA AND FRACTURE STATISTICS , 1994 .

[9]  D. Jeulin Random models for morphological analysis of powders , 1993 .

[10]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[11]  Torquato,et al.  Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. , 1986, Physical review. B, Condensed matter.

[12]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[13]  Graeme W. Milton,et al.  Bounds on the elastic and transport properties of two-component composites , 1982 .

[14]  Graeme W. Milton,et al.  Bounds on the complex dielectric constant of a composite material , 1980 .

[15]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[16]  G. Matheron Random Sets and Integral Geometry , 1976 .

[17]  M. Hori Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials. II. Bounds for the effective permittivity of statistically anisotropic materials , 1973 .

[18]  Melvin N. Miller Bounds for Effective Electrical, Thermal, and Magnetic Properties of Heterogeneous Materials , 1969 .

[19]  Mark J. Beran,et al.  Statistical Continuum Theories , 1965 .

[20]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[21]  D. Jeulin,et al.  Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets, Fontainebleau, France, 9-11 October 1996 , 1997 .

[22]  D. Jeulin,et al.  Bounds of effective physical properties for random polygon composites , 1996 .

[23]  Pierre Soille,et al.  Mathematical Morphology and Its Applications to Image Processing , 1994, Computational Imaging and Vision.

[24]  Dominique Jeulin,et al.  Liquid Phase Sintered Materials Modelling by Random Closed Sets , 1994, International Symposium on Mathematical Morphology and Its Application to Signal and Image Processing.

[25]  D. Jeulin,et al.  DAMAGE SIMULATION IN HETEROGENEOUS MATERIALS FROM GEODESIC PROPAGATIONS , 1993 .

[26]  Dominique Jeulin,et al.  Modeles morphologiques de structures aleatoires et de changement d'echelle , 1991 .

[27]  P. Kittl,et al.  Weivull's fracture statistics, or probabilistic strength of materials: state of the art , 1988 .

[28]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[29]  E. Kröner Statistical continuum mechanics , 1971 .

[30]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .