Molecular dynamics simulation of a hydrated phospholipid bilayer.

A hydrated bilayer of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) has been studied in the course of a molecular dynamics simulation. Comparison of the simulation results with experiment indicates that generally the two agree well. Data are presented concerning all the major system regions, including the hydrocarbon chains, the glycerol region, the lipid headgroups and the hydrating water molecules. The simulations suggest that this model can be extended to the study of more complex systems of greater biochemical interest, such as membrane bound proteins.

[1]  Keith R.F. Elliott,et al.  Biochemistry, 3rd edn , 1990 .

[2]  J. Nagle,et al.  Lecithin bilayers. Density measurement and molecular interactions. , 1978, Biophysical journal.

[3]  E. Dufourc,et al.  Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. , 1992, Biophysical journal.

[4]  D. Engelman,et al.  Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. , 1983, Journal of molecular biology.

[5]  G Büldt,et al.  Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. , 1979, Journal of molecular biology.

[6]  L. J. Lis,et al.  Interactions between neutral phospholipid bilayer membranes. , 1982, Biophysical journal.

[7]  William L. Jorgensen,et al.  Relative partition coefficients for organic solutes from fluid simulations , 1990 .

[8]  Roger Impey,et al.  Spectroscopic and transport properties of water , 1982 .

[9]  Bo Jönsson,et al.  Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution , 1986 .

[10]  K V Damodaran,et al.  Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. , 1992, Biochemistry.

[11]  K. Merz,et al.  Head group-water interactions in lipid bilayers: a comparison between DMPC- and DLPE-based lipid bilayers , 1993 .

[12]  R. Thurmond,et al.  Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of phosphatidylethanolamines and phosphatidylcholines. , 1991, Biophysical journal.

[13]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[14]  H. L. Scott Phosphatidylcholine head groups can induce short-range order in interfacial water in vesicles , 1984 .

[15]  D. Small The physical chemistry of lipids : from alkanes to phospholipids , 1986 .

[16]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[17]  H. Günthard,et al.  Hydration sites of egg phosphatidylcholine determined by means of modulated excitation infrared spectroscopy. , 1976, Biochimica et Biophysica Acta.

[18]  G. Shipley,et al.  Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. , 1979, The Journal of biological chemistry.

[19]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS SIMULATION OF A BILAYER-MEMBRANE , 1982 .

[20]  E. Oldfield,et al.  Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. , 1978, Biochemistry.

[21]  James H. Davis,et al.  The description of membrane lipid conformation, order and dynamics by 2H-NMR. , 1983, Biochimica et biophysica acta.

[22]  Nicholas Quirke,et al.  Molecular dynamics simulation of a Langmuir–Blodgett film , 1991 .

[23]  J. Schlitter,et al.  A statistical mechanical treatment of fatty acyl chain order in phospholipid bilayers and correlation with experimental data. A. Theory. , 1981, Biochimica et biophysica acta.

[24]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS OF A BILAYER-MEMBRANE , 1983 .

[25]  G Büldt,et al.  Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. , 1979, Journal of molecular biology.

[26]  S. Hui,et al.  Molecular organization in cholesterol-lecithin bilayers by X-ray and electron diffraction measurements. , 1983, Biochemistry.

[27]  A. Blume,et al.  Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. , 1988, Biochemistry.

[28]  G. Büldt,et al.  Zwitterionic dipoles as a dielectric probe for investigating head group mobility in phospholipid membranes. , 1978, Biochimica et biophysica acta.

[29]  R. Pearson,et al.  The molecular structure of lecithin dihydrate , 1979, Nature.

[30]  J. Seelig,et al.  Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. , 1977, Biochimica et biophysica acta.

[31]  P. Westerman,et al.  A model of orientational ordering in phosphatidylcholine bilayers based on conformational analysis of the glycerol backbone region. , 1985, Biophysical journal.

[32]  R. Mendelsohn,et al.  Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. , 1989, Biochemistry.

[33]  J. Seelig,et al.  Structural dynamics in phospholipid bilayers from deuterium spin–lattice relaxation time measurements , 1979 .

[34]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[35]  Terry R. Stouch,et al.  Computer simulation of a phospholipid monolayer‐water system: The influence of long range forces on water structure and dynamics , 1993 .

[36]  V. Simplaceanu,et al.  Rotating-frame relaxation studies of slow motions in fluorinated phospholipid model membranes. , 1988, Biophysical journal.

[37]  Egbert Egberts Molecular dynamics simulation of multibilayer membranes. , 1988 .

[38]  Max L. Berkowitz,et al.  Computer simulation of a water/membrane interface , 1991 .

[39]  Lee G. Pedersen,et al.  Construction and molecular modeling of phospholipid surfaces , 1990 .

[40]  K. Müller,et al.  Deuteron N.M.R. relaxation studies of phospholipid membranes , 1988 .

[41]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[42]  J. Andrew McCammon,et al.  Mass and step length optimization for the calculation of equilibrium properties by molecular dynamics simulation , 1990 .

[43]  H De Loof,et al.  Mean field stochastic boundary molecular dynamics simulation of a phospholipid in a membrane. , 1991, Biochemistry.

[44]  E. Oldfield,et al.  Physical studies of cell surface and cell membrane structure. Determination of phospholipid head group organization by deuterium and phosphorus nuclear magnetic resonance spectroscopy. , 1979, Biochemistry.

[45]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[46]  D. Rhodes,et al.  Structure of polymerizable lipid bilayers: water profile of a diacetylenic lipid bilayer using elastic neutron scattering. , 1990, Biochimica et biophysica acta.

[47]  P. Meier,et al.  Multipulse dynamic nuclear magnetic resonance of phospholipid membranes , 1986 .

[48]  E. G. Finer Interpretation of deuteron magnetic resonance spectroscopic studies of the hydration of macromolecules , 1973 .

[49]  J. Davis,et al.  Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. , 1979, Biophysical journal.

[50]  J J Wendoloski,et al.  Molecular dynamics simulation of a phospholipid micelle. , 1989, Science.

[51]  D. Pink,et al.  Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. , 1980, Biochemistry.

[52]  Y. Lange,et al.  Diffusion processes in lipid-water lamellar phases. , 1972, Biochimica et biophysica acta.

[53]  D. J. Wilbur,et al.  Molecular motions in compressed liquid water , 1976 .

[54]  H. Berendsen,et al.  Molecular dynamics simulation of a smectic liquid crystal with atomic detail , 1988 .

[55]  G. Zaccai,et al.  Neutron diffraction studies on selectively deuterated phospholipid bilayers , 1978, Nature.

[56]  D. Cowburn,et al.  The origin of multiple quadrupole couplings in the deuterium NMR spectra of the 2 chain of 1,2 dipalmitoyl‐sn‐glycero‐3‐phosphorylcholine , 1981, FEBS letters.

[57]  P. Meier,et al.  Molecular order and dynamics of phospholipid membranes. A deuteron magnetic resonance study employing a comprehensive line-shape model , 1983 .

[58]  J. Schlitter,et al.  A statistical mechanical treatment of fatty acyl chain order in phospholipid bilayers and correlation with experimental data. B. Dipalmitoyl-3-sn-phosphatidylcholine. , 1981, Biochimica et biophysica acta.

[59]  O. Edholm,et al.  Cholesterol in model membranes. A molecular dynamics simulation. , 1992, Biophysical journal.

[60]  K. Esselink,et al.  Molecular dynamics simulations of oil solubilization in surfactant solutions , 1993 .

[61]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[62]  P. Kinnunen,et al.  Conformation of phosphatidylcholine in neat and cholesterol-containing liquid-crystalline bilayers. Application of a novel method. , 1992, Biochemistry.

[63]  P. Meier,et al.  Proton spin relaxation dispersion studies of phospholipid membranes , 1988 .

[64]  M. Rami Reddy,et al.  A molecular dynamics study of the structure and dynamics of water between dilauroylphosphatidylethanolamine bilayers , 1992 .

[65]  R. Mendelsohn,et al.  CD2 rocking modes as quantitative infrared probes of one-, two-, and three-bond conformational disorder in dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine/cholesterol mixtures. , 1991, Biochemistry.

[66]  K. Dill,et al.  Solute partitioning into lipid bilayer membranes. , 1988, Biochemistry.

[67]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[68]  H. Akutsu Direct determination by Raman scattering of the conformation of the choline group in phospholipid bilayers. , 1981, Biochemistry.

[69]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[70]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[71]  H. Hauser,et al.  Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis. , 1988, Biochemistry.

[72]  D. Marsh,et al.  Phospholipid Bilayers: Physical Principles and Models , 1987 .

[73]  Jonathan W. Essex,et al.  Atomic charges for variable molecular conformations , 1992 .

[74]  R. Impey,et al.  Dynamics of Coordinated Water: A Comparison of Experiment and Simulation Results a , 1986 .

[75]  Michiel Sprik,et al.  Molecular dynamics simulation of an aqueous sodium octanoate micelle using polarizable surfactant molecules , 1993 .

[76]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[77]  J. Andrew McCammon,et al.  Diffusive langevin dynamics of model alkanes , 1979 .

[78]  Terry R. Stouch,et al.  Conformational dependence of electrostatic potential derived charges of a lipid headgroup: Glycerylphosphorylcholine , 1992 .

[79]  Keith B. Ward,et al.  Simulations of lipid crystals: Characterization of potential energy functions and parameters for lecithin molecules , 1991 .

[80]  J. Prestegard,et al.  Dynamics of an interfacial methylene in dimyristoylphosphatidylcholine vesicles using carbon-13 spin relaxation. , 1983, Biochemistry.