Élie Cartan's geometrical vision or how to avoid expression swell

The aim of the paper is to demonstrate the superiority of Cartan's method over direct methods based on differential elimination for handling otherwise intractable equivalence problems. In this sense, using our implementation of Cartan's method, we establish two new equivalence results. We establish when a system of second order ODEs is equivalent to flat system (second derivations are zero), and when a system of holomorphic PDEs with two independent variables and one dependent variable is flat. We consider the problem of finding transformation that brings a given equation to the target one. We shall see that this problem becomes algebraic when the symmetry pseudogroup of the target equation is zerodimensional. We avoid the swelling of the expressions, by using non-commutative derivations adapted to the problem.

[1]  S. Chern,et al.  Exterior Differential Systems , 1990 .

[2]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[3]  E. Cartan Les problèmes d'équivalence , 1937 .

[4]  S. Chern On the projective structure of a real hypersurface in C... , 1975 .

[5]  François Boulier,et al.  Réécriture algébrique dans les systèmes d'équations différentielles polynomiales en vue d'applications dans les Sciences du Vivant , 2006 .

[6]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .

[7]  Gregory J. Reid,et al.  Reduction of systems of nonlinear partial differential equations to simplified involutive forms , 1996, European Journal of Applied Mathematics.

[8]  S. Chern On the projective structure of a real hypersurface in $\mathsf{C}_{n+1}$. , 1975 .

[9]  Evelyne Hubert,et al.  Differential Algebra for Derivations with Nontrivial Commutation Rules , 2005 .

[10]  Sylvain Neut,et al.  Implantation et nouvelles applications de la méthode d'équivalence de Cartan , 2003 .

[11]  E. Cartan,et al.  Les systèmes différentiels extérieurs et leurs applications géométriques , 1945 .

[12]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[13]  Robert B. Gardner,et al.  The Method of Equivalence and Its Applications , 1989 .

[14]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[15]  M. Kuranishi ON E. CARTAN'S PROLONGATION THEOREM OF EXTERIOR DIFFERENTIAL SYSTEMS.* , 1957 .

[16]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[17]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[18]  M. Fels The Equivalence Problem for Systems of Second order Ordinary Differential Equations , 1995 .

[19]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .