Synthetic Approaches to Cytotoxic Amidophosphates, Aminophosphonates, and Aminobisphosphonates with 3,5-Bis(arylidene)piperid-4-one Framework

Abstract Facile synthetic approaches to a few novel classes of amidophosphates, ω-aminophosphonates, and bisphosphonates having a 3,5-bis(arylidene)piperid-4-one backbone have been elaborated starting from piperid-4-ones functionalized with phosphorus motives followed by aldol-crotonic condensation with a range of (hetero)aromatic aldehydes or via introduction of the corresponding phosphorus function into the preformed NH-3,5-bis(arylidene)piperid-4-ones. Combination of phosphorus-containing moieties possessing inherent bioactivity and cytotoxic 3,5-bis(arylidene)piperid-4-one moiety resulted in the compounds with high antitumor activity towards human carcinoma cell lines Caov3, A549, Scov3, PC3, KB 3-1, and KB 8–5 (IC50 in the range of 1–80 μM).

[1]  I. Odinets,et al.  Structure-cytotoxicity relationship in a series of N-phosphorus substituted E,E-3,5-bis(3-pyridinylmethylene)- and E,E-3,5-bis(4-pyridinylmethylene)piperid-4-ones. , 2010, European journal of medicinal chemistry.

[2]  Z. Klemenkova,et al.  Lewis Acids as Mild and Effective Catalysts for the Synthesis of 3,5-Bis[(hetero)arylidene]piperidin-4-ones , 2010 .

[3]  I. Odinets,et al.  Ionic Liquids and Water as “Green” Solvents in Organophosphorus Synthesis , 2010 .

[4]  S. N. Osipov,et al.  Synthesis of functionalized α-CF3-α-aminophosphonates via Cu(I)-catalyzed 1,3-dipolar cycloaddition , 2010 .

[5]  V. Khrustalev,et al.  Synthesis, characterization and structure-activity relationship of novel N-phosphorylated E,E-3,5-bis(thienylidene)piperid-4-ones. , 2010, European journal of medicinal chemistry.

[6]  R. Sharma,et al.  1,5-diaryl-3-oxo-1,4-pentadienes: a case for antineoplastics with multiple targets. , 2009, Current medicinal chemistry.

[7]  G. Röschenthaler,et al.  Design, cytotoxic and fluorescent properties of novel N-phosphorylalkyl substituted E,E-3,5-bis(arylidene)piperid-4-ones. , 2009, European journal of medicinal chemistry.

[8]  K. Lyssenko,et al.  N-Alkylated 3,5-bis(arylidene)-4-piperidones. Synthetic Approaches, X-ray Structure and Anticancer Activity , 2008 .

[9]  S. N. Osipov,et al.  Facile synthesis of phosphorylated azides in ionic liquids and their use in the preparation of 1,2,3‐triazoles , 2008 .

[10]  J. Dimmock,et al.  N-Aroyl-3,5-bis(benzylidene)-4-piperidones: a novel class of antimycobacterial agents. , 2008, Bioorganic & medicinal chemistry.

[11]  J. Quail,et al.  Cytotoxic 3,5-bis(benzylidene)piperidin-4-ones and N-acyl analogs displaying selective toxicity for malignant cells. , 2008, European journal of medicinal chemistry.

[12]  S. N. Osipov,et al.  Synthesis of functionalized bisphosphonates via click chemistry. , 2007, Organic & biomolecular chemistry.

[13]  Lin Ma,et al.  Alpha-glucosidase inhibition of natural curcuminoids and curcumin analogs. , 2006, European journal of medicinal chemistry.

[14]  G. Rothenberg,et al.  Click Chemistry: Copper Clusters Catalyse the Cycloaddition of Azides with Terminal Alkynes , 2005 .

[15]  K. Lyssenko,et al.  N‐phosphorylated 3,5‐bis(arylidene)4‐piperidones: Synthesis, X‐ray structure, and evaluation of antitumor activity , 2005 .

[16]  E. Oldfield,et al.  Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi. , 2004, International journal of antimicrobial agents.

[17]  E. Oldfield,et al.  Antiparasitic activity of risedronate in a murine model of acute Chagas' disease. , 2004, International journal of antimicrobial agents.

[18]  K. Youssef,et al.  Synthesis of Curcumin Analogues as Potential Antioxidant, Cancer Chemopreventive Agents , 2004, Archiv der Pharmazie.

[19]  R. Docampo,et al.  Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. , 2003, Bioorganic & medicinal chemistry letters.

[20]  Chi‐Huey Wong,et al.  A Potent and Highly Selective Inhibitor of Human α-1,3-Fucosyltransferase via Click Chemistry , 2003 .

[21]  T. Cawston,et al.  Drugs in development: bisphosphonates and metalloproteinase inhibitors , 2002, Arthritis research & therapy.

[22]  H. Uludaǧ Bisphosphonates as a foundation of drug delivery to bone. , 2002, Current pharmaceutical design.

[23]  E. De Clercq,et al.  A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. , 2001, Journal of medicinal chemistry.

[24]  H. Fleisch Bisphosphonates in Bone Disease: From the Laboratory to the Patient , 2000 .

[25]  G. Rodan,et al.  Alendronate and osteoporosis , 1998 .

[26]  S. Giannini,et al.  Continuous and Cyclical Clodronate Therapies and Bone Density in Postmenopausal Bone Loss , 1996, Obstetrics and gynecology.

[27]  S. Papapoulos The role of bisphosphonates in the prevention and treatment of osteoporosis. , 1993, The American journal of medicine.

[28]  R. Valkema,et al.  The use of bisphosphonates in the treatment of osteoporosis. , 1992, Bone.

[29]  H. Kalant,et al.  Principles of Medical Pharmacology , 1989 .

[30]  H. Fleisch,et al.  Diphosphonates Inhibit Hydroxyapatite Dissolution in vitro and Bone Resorption in Tissue Culture and in vivo , 1969, Science.