Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

Abstract. Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.

Qi Zhang | Beat Schmid | Evgueni I. Kassianov | Larry K. Berg | Brian Cairns | Manvendra K. Dubey | John E. Shilling | Alla Zelenyuk | Claudio Mazzoleni | Swarup China | W. J. Shaw | Cody Floerchinger | W. P. Arnott | William I. Gustafson | Michael D. Obland | Raul J. Alvarez | Nels S. Laulainen | James C. Barnard | Hilke Oetjen | Edward Charles Fortner | Arthur J. Sedlacek | Robert M. Banta | Mikhail D. Alexandrov | Chris A. Hostetler | Jerome D. Fast | Jennifer M. Comstock | D. R. Worsnop | Kimberly A. Prather | R. M. Hardesty | Xiao-Ying Yu | Jian Wang | Fan Mei | Naruki Hiranuma | M. L. Alexander | Scott P. Sandberg | Duli Chand | Mikhail S. Pekour | Matteo Ottaviani | Andrew O. Langford | Rainer Volkamer | Stephen R. Springston | Alexander Laskin | Scott Herndon | Ari Setyan | B. Knighton | Richard C. Easter | Christopher D. Cappa | Chongai Kuang | E. Kassianov | J. Barnard | J. Comstock | M. Dubey | S. Herndon | A. Laskin | Jian Wang | C. Kuang | R. Volkamer | Qi Zhang | D. Worsnop | K. Prather | B. Cairns | T. Onasch | J. Jayne | R. Subramanian | R. Ferrare | B. Jobson | C. Hostetler | R. Rogers | M. Obland | J. Hair | N. Laulainen | B. Schmid | A. Zelenyuk | R. Banta | L. Kleinman | S. Springston | R. Easter | M. Alexandrov | C. Floerchinger | A. Kubátová | J. Fast | W. Gustafson | W. Arnott | S. Sandberg | W. Shaw | A. Weickmann | R. Zaveri | M. Ottaviani | B. Knighton | A. Sedlacek | D. Atkinson | M. Alexander | J. Hubbe | F. Brechtel | D. Chand | M. Shrivastava | R. Hardesty | D. Cziczo | C. Mazzoleni | H. Oetjen | L. Berg | M. Pekour | Xiao‐Ying Yu | W. A. Brewer | J. Tomlinson | J. Gaffney | Rahul A. Zaveri | B. T. Jobson | Timothy B. Onasch | John T. Jayne | F. Mei | J. Shilling | K. Suski | M. K. Gilles | Ramachandran Subramanian | C. Cappa | Dean B. Atkinson | Jason M. Tomlinson | A. Langford | A. Setyan | Ivan Ortega | Lawrence I. Kleinman | R. R. Rogers | John M. Hubbe | Celine D. Kluzek | Christoph J. Senff | Fred J. Brechtel | R. Moffet | Jeffrey S. Gaffney | C. Senff | A. M. Weickmann | R. Marchbanks | Rich Ferrare | Kaitlyn J. Suski | Daniel James Cziczo | C. Song | James G. Radney | Katheryn R. Kolesar | Ryan C. Moffet | R. D. Marchbanks | N. Hiranuma | Jonathan Hair | Sunil Baidar | Josef Beranek | John F. Cahill | M. Erickson | Bradley A. Flowers | Marry K. Gilles | Kyle Gorkowski | Madhu Gyawali | J. W. Harworth | H. Jeong | Alena Kubátová | Danny A. Nelson | Gunnar Senum | ManishKumar B. Shrivastava | H. W. Wallace | J. Beránek | I. Ortega | S. China | K. Gorkowski | J. F. Cahill | S. Baidar | R. Alvarez | D. A. Nelson | J. Radney | B. Flowers | G. Senum | M. Gyawali | C. Kluzek | M. Erickson | K. R. Kolesar | C. Song | H. Jeong | W. Brewer

[1]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[2]  A. Goldstein,et al.  VOC reactivity in central California: comparing an air quality model to ground-based measurements , 2007 .

[3]  D. Murphy,et al.  Aircraft Instrument for Comprehensive Characterization of Aerosol Optical Properties, Part I: Wavelength-Dependent Optical Extinction and Its Relative Humidity Dependence Measured Using Cavity Ringdown Spectroscopy , 2011 .

[4]  Pierre Tulet,et al.  Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City , 2009 .

[5]  J. Barnard,et al.  Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES) , 2011 .

[6]  A. Laskin,et al.  Molecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry. , 2010, Analytical chemistry.

[7]  S. Weinbruch,et al.  Transmission electron microscopical and aerosol dynamical characterization of soot aerosols , 2003 .

[8]  Paul J. DeMott,et al.  Observation of playa salts as nuclei in orographic wave clouds , 2010 .

[9]  M. Jacobson Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming , 2002 .

[10]  P. Buseck,et al.  Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City , 2008 .

[11]  J. Seinfeld,et al.  Reactive intermediates revealed in secondary organic aerosol formation from isoprene , 2009, Proceedings of the National Academy of Sciences.

[12]  U. Lohmann,et al.  A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing , 2002 .

[13]  Jian Wang,et al.  Measuring aerosol size distributions with the fast integrated mobility spectrometer , 2008 .

[14]  Y. Kaufman,et al.  Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil , 1998 .

[15]  T. Guilderson,et al.  The impact of biogenic carbon sources on aerosol absorption in Mexico City , 2009 .

[16]  Philip B. Russell,et al.  An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation , 2010 .

[17]  K. Prather,et al.  Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles. , 2007, Environmental science & technology.

[18]  D. Atkinson,et al.  Laboratory Validation of Aerosol Extinction Coefficient Measurements by a Field-Deployable Pulsed Cavity Ring-Down Transmissometer , 2009 .

[19]  Qi Zhang,et al.  O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. , 2008, Environmental science & technology.

[20]  R. C. Easter,et al.  Simulating the evolution of soot mixing state with a particle-resolved aerosol model , 2008, 0809.0875.

[21]  E. Edgerton,et al.  Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States , 2010 .

[22]  S. Madronich,et al.  Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation , 2010 .

[23]  Glenn E. Shaw,et al.  Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze , 2001 .

[24]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[25]  Beat Schmid,et al.  Polarimetric remote sensing of aerosols over land , 2009 .

[26]  Claudio Mazzoleni,et al.  Soot Particle Studies—Instrument Inter-Comparison—Project Overview , 2010 .

[27]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[28]  John H. Seinfeld,et al.  Modeling and Characterization of a Particle-into-Liquid Sampler (PILS) , 2006 .

[29]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[30]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[31]  T. L. Thompson,et al.  A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer , 2007 .

[32]  J. Jimenez,et al.  Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data , 2008 .

[33]  Joost A. de Gouw,et al.  A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States , 2007 .

[34]  Yong Cai,et al.  Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies , 2008 .

[35]  S. Howell,et al.  Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar , 2011 .

[36]  Jian Wang,et al.  Aircraft observations of aerosol composition and ageing in New England and Mid‐Atlantic States during the summer 2002 New England Air Quality Study field campaign , 2007 .

[37]  B. Nozière,et al.  Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols , 2005 .

[38]  D. Klockow,et al.  Spectroscopic Characterization of Humic-Like Substances in Airborne Particulate Matter , 1998 .

[39]  Alla Zelenyuk,et al.  Single Particle Laser Ablation Time-of-Flight Mass Spectrometer: An Introduction to SPLAT , 2005 .

[40]  K. Prather,et al.  Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. , 2009, Analytical chemistry.

[41]  Allen L Robinson,et al.  Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging , 2007, Science.

[42]  M. Stephens,et al.  Particle identification by laser-induced incandescence in a solid-state laser cavity. , 2003, Applied optics.

[43]  B. Wehner,et al.  Absorption amplification of black carbon internally mixed with secondary organic aerosol , 2005 .

[44]  D. Murphy,et al.  Particle analysis by laser mass spectrometry (PALMS) studies of ice nuclei and other low number density particles , 2006 .

[45]  Alla Zelenyuk,et al.  SPLAT II: An Aircraft Compatible, Ultra-Sensitive, High Precision Instrument for In-Situ Characterization of the Size and Composition of Fine and Ultrafine Particles , 2009 .

[46]  Kirsten L. Findell,et al.  Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants , 2008 .

[47]  Reinhard F. Bruch,et al.  Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description , 1999 .

[48]  Qi Zhang,et al.  Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes , 2007 .

[49]  R. Moffet Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City , 2009 .

[50]  R. Martin,et al.  Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests , 2009 .

[51]  Robert McLaren,et al.  Heterogeneous reactions of glyoxal on particulate matter: identification of acetals and sulfate esters. , 2005, Environmental science & technology.

[52]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[53]  N. Sareen,et al.  Secondary organic material formed by methylglyoxal in aqueous aerosol mimics , 2010 .

[54]  Daniel M. Murphy,et al.  Particle density inferred from simultaneous optical and aerodynamic diameters sorted by composition , 2004 .

[55]  John H. Seinfeld,et al.  Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere , 2008 .

[56]  Axel Lauer,et al.  Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere , 2006 .

[57]  Mahoney,et al.  In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers , 1998, Science.

[58]  James C. Barnard,et al.  Applications of lagrangian dispersion modeling to the analysis of changes in the specific absorption of elemental carbon , 2008 .

[59]  Joseph T. Hodges,et al.  Photoacoustic Measurements of Amplification of the Absorption Cross Section for Coated Soot Aerosols , 2011 .

[60]  J. Ogren Comment on “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols” , 2010 .

[61]  Sang Woo Kim,et al.  Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis , 2010 .

[62]  J. Gaffney,et al.  Natural radionuclides in fine aerosols in the Pittsburgh area , 2004 .

[63]  Earl L. Bailey,et al.  Secondary organic aerosol formation by glyoxal hydration and oligomer formation: humidity effects and equilibrium shifts during analysis. , 2005, Environmental science & technology.

[64]  T. Cerling,et al.  Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies , 1999, Oecologia.

[65]  N. Takegawa,et al.  Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo , 2006 .

[66]  W. J. Cooper,et al.  Appearance of strong absorbers and fluorophores in limonene‐O3 secondary organic aerosol due to NH4+‐mediated chemical aging over long time scales , 2010 .

[67]  John H Seinfeld,et al.  Organosulfate formation in biogenic secondary organic aerosol. , 2008, The journal of physical chemistry. A.

[68]  James B. Burkholder,et al.  Bias in Filter-Based Aerosol Light Absorption Measurements Due to Organic Aerosol Loading: Evidence from Laboratory Measurements , 2008 .

[69]  Steven J. Ghan,et al.  Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models , 2007 .

[70]  T. Bond,et al.  Limitations in the enhancement of visible light absorption due to mixing state , 2006 .

[71]  Gilmore J. Sem,et al.  Design and performance characteristics of three continuous-flow condensation particle counters: a summary , 2002 .

[72]  W. Malm,et al.  Effects of mixing on extinction by carbonaceous particles , 1999 .

[73]  Kimberly A. Prather,et al.  The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties , 2008 .

[74]  A. Zelenyuk,et al.  Extending the Capabilities of Single Particle Mass Spectrometry: I. Measurements of Aerosol Number Concentration, Size Distribution, and Asphericity , 2011 .

[75]  Ulrich Pöschl,et al.  An amorphous solid state of biogenic secondary organic aerosol particles , 2010, Nature.

[76]  Georg A. Grell,et al.  Fully coupled “online” chemistry within the WRF model , 2005 .

[77]  J. Jimenez,et al.  Atmospheric condensed‐phase reactions of glyoxal with methylamine , 2009 .

[78]  Andreas Limbeck,et al.  Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles , 2003 .

[79]  A. Laskin,et al.  Iron speciation and mixing in single aerosol particles from the Asian continental outflow , 2012 .

[80]  N. Takegawa,et al.  Dependence of CCN activity of less volatile particles on the amount of coating observed in Tokyo , 2007 .

[81]  M. Jacobson Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate. , 2006, The journal of physical chemistry. A.

[82]  A. Zelenyuk,et al.  Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates. , 2010, Environmental science & technology.

[83]  M. Mishchenko,et al.  Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols , 2011 .

[84]  Connor J. Flynn,et al.  Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003 , 2006 .

[85]  B. Dix,et al.  Ship-based detection of glyoxal over the remote tropical Pacific Ocean , 2010 .

[86]  J. Reid,et al.  Fundamentals and Applications in Aerosol Spectroscopy , 2011 .

[87]  P. Buseck,et al.  Shapes of soot aerosol particles and implications for their effects on climate , 2010 .

[88]  A. Zelenyuk,et al.  In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II. , 2010, Analytical chemistry.

[89]  D. Murphy,et al.  The design of single particle laser mass spectrometers. , 2007, Mass spectrometry reviews.

[90]  B. Stephens,et al.  Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios , 2009 .

[91]  A. Nenes,et al.  Cloud condensation nuclei closure during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Effects of size-resolved composition , 2007 .

[92]  Alla Zelenyuk,et al.  Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis of α‐pinene , 2007 .

[93]  Quantification of diesel exhaust gas phase organics by a thermal desorption proton transfer reaction mass spectrometer , 2012 .

[94]  Jian Wang,et al.  New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution—I: Concept and theory , 2006 .

[95]  A. Zelenyuk,et al.  Simultaneous determination of individual ambient particle size, hygroscopicity and composition , 2002 .

[96]  Z. Jurányi,et al.  Changes of hygroscopicity and morphology during ageing of diesel soot , 2011 .

[97]  Meinrat O. Andreae,et al.  Optical properties of humic-like substances (HULIS) in biomass-burning aerosols , 2005 .

[98]  James F. Pankow,et al.  Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—2. Dialdehydes, methylglyoxal, and diketones , 2005 .

[99]  J. D. de Gouw,et al.  An important contribution to springtime Arctic aerosol from biomass burning in Russia , 2010 .

[100]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[101]  David J. Delene,et al.  Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites , 2002 .

[102]  J. Offenberg,et al.  Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 2. Organic tracer compounds from monoterpenes. , 2005, Environmental science & technology.

[103]  T. Tyliszczak,et al.  Chemical speciation of sulfur in marine cloud droplets and particles: Analysis of individual particles from the marine boundary layer over the California current , 2008 .

[104]  S. Kreidenweis,et al.  SOA formation by biogenic and carbonyl compounds: data evaluation and application. , 2007, Environmental science & technology.

[105]  M. Molina,et al.  Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected , 2006 .

[106]  S. Madronich,et al.  Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume , 2011, Atmospheric Chemistry and Physics.

[107]  R. Banta,et al.  Comparison between the TOPAZ Airborne Ozone Lidar and In Situ Measurements during TexAQS 2006 , 2011 .

[108]  M. Kohn,et al.  Droplet activation, separation, and compositional analysis: laboratory studies and atmospheric measurements , 2011 .

[109]  J. Seinfeld,et al.  Second-generation inorganic aerosol model , 1991 .

[110]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[111]  Alla Zelenyuk,et al.  Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles , 2009 .

[112]  A. Laskin,et al.  Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis , 2010 .

[113]  U. Lohmann,et al.  Coatings and their enhancement of black carbon light absorption in the tropical atmosphere , 2008 .

[114]  J. Seinfeld,et al.  Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry , 2010, Proceedings of the National Academy of Sciences.

[115]  B. Cairns,et al.  Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill , 2012 .

[116]  A. Laskin,et al.  Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids , 2012 .

[117]  U. Lohmann,et al.  Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties , 2009 .

[118]  A. Córdova,et al.  Formation of secondary light‐absorbing “fulvic‐like” oligomers: A common process in aqueous and ionic atmospheric particles? , 2007 .

[119]  S. Hasegawa,et al.  Some measurements of the mixing state of soot-containing particles at urban and non-urban sites , 2002 .

[120]  A. Zelenyuk,et al.  Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol , 2011, Proceedings of the National Academy of Sciences.

[121]  J. Michalsky,et al.  Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. , 1994, Applied optics.

[122]  Jian Wang,et al.  New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution: II. Design, calibration, and performance characterization , 2006 .

[123]  N. Takegawa,et al.  Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence, Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques , 2011 .

[124]  Daniel R. Stroik,et al.  Secondary organic aerosol-forming reactions of glyoxal with amino acids. , 2009, Environmental science & technology.

[125]  P. Mcmurry,et al.  Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing , 2008, Proceedings of the National Academy of Sciences.

[126]  Matthew West,et al.  Particle‐resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume , 2010 .

[127]  Y. Kondo,et al.  Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam , 2008 .

[128]  A. R. Ravishankara,et al.  Aerosol Absorption Measurement using Photoacoustic Spectroscopy: Sensitivity, Calibration, and Uncertainty Developments , 2006 .

[129]  M. Andreae,et al.  Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols , 2006 .

[130]  A. Córdova,et al.  Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4(+)). , 2009, The journal of physical chemistry. A.

[131]  A. Laskin,et al.  Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge. , 2010, Analytical chemistry.

[132]  B. Weinzierl,et al.  Single Particle Soot Photometer intercomparison at the AIDA chamber , 2012 .

[133]  Guy N. Pearson,et al.  An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer , 2009 .

[134]  A. Duarte,et al.  Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions. , 2005 .

[135]  Qi Zhang,et al.  Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. , 2005, Environmental science & technology.

[136]  G. Grell,et al.  Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology‐chemistry‐aerosol model , 2006 .

[137]  R. Ruedy,et al.  MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models , 2008 .

[138]  R. Monson,et al.  Evolutionary and Ecological Aspects of Photosynthetic Pathway Variation , 1993 .

[139]  K. Prather,et al.  Extending ATOFMS measurements to include refractive index and density. , 2005, Analytical chemistry.

[140]  M. Legrand,et al.  Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe , 2007 .

[141]  J. Peischl,et al.  Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions , 2008 .

[142]  R. Ferrare,et al.  NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation , 2009 .

[143]  Nobuo Sugimoto,et al.  Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. , 2006, Applied optics.

[144]  H. Jonsson,et al.  The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations , 2001 .

[145]  W. Arnott,et al.  In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption , 2009 .

[146]  E. Kassianov,et al.  Shortwave spectral radiative forcing of cumulus clouds from surface observations , 2011 .

[147]  H. Burtscher,et al.  An improved low-flow thermodenuder , 2007 .

[148]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[149]  Philip B. Russell,et al.  Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo , 2002 .

[150]  Jian Wang,et al.  Chemical evolution of an isolated power plant plume during the TexAQS 2000 study , 2002 .

[151]  A. Zelenyuk,et al.  Extending the Capabilities of Single Particle Mass Spectrometry: II. Measurements of Aerosol Particle Density without DMA , 2011 .

[152]  David S. Covert,et al.  Bias in Filter-Based Aerosol Light Absorption Measurements Due to Organic Aerosol Loading: Evidence from Ambient Measurements , 2008 .

[153]  Jerome D. Fast,et al.  Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) , 2008 .

[154]  M. Molina,et al.  A User’s Reference , 2022 .

[155]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[156]  M. Schnaiter,et al.  Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene , 2003 .

[157]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[158]  Droplet activation, separation, and compositional analysis: Laboratory studies and atmospheric measurements , 2011 .

[159]  Thomas W. Kirchstetter,et al.  Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon , 2004 .

[160]  L. S. Hughes,et al.  Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory , 2001 .

[161]  Robert J. Charlson,et al.  Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer , 1996 .

[162]  J. Smith,et al.  A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol. , 2001, The Analyst.

[163]  T. Bond Can warming particles enter global climate discussions? , 2007 .

[164]  F. Drewnick,et al.  Interactive comment on “ Chemical composition of ambient aerosol , ice residues and cloud droplet residues in mixed-phase clouds : single particle analysis during the Cloud and Aerosol Characterization Experiment ( CLACE 6 ) ” , 2009 .

[165]  R. Banta,et al.  Development and Application of a Compact, Tunable, Solid-State Airborne Ozone Lidar System for Boundary Layer Profiling , 2011 .

[166]  W. P. Arnott,et al.  Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument , 2008 .

[167]  P. Buseck,et al.  Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles , 2003 .

[168]  A. Zelenyuk,et al.  Simultaneous measurements of individual ambient particle size, composition, effective density, and hygroscopicity. , 2008, Analytical Chemistry.

[169]  K. Prather,et al.  Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations , 2007 .

[170]  A. Laskin,et al.  Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. , 2011, Physical chemistry chemical physics : PCCP.

[171]  Martin J. Iedema,et al.  Analysis of Individual Environmental Particles Using Modern Methods of Electron Microscopy and X-Ray Microanalysis , 2006 .

[172]  H. Mukai,et al.  Characterization of a humic acid-like brown substance in airborne particulate matter and tentative identification of its origin , 1986 .

[173]  N. Sareen,et al.  Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics , 2009 .

[174]  B. Dix,et al.  MAX-DOAS observations from ground, ship, and research aircraft: maximizing signal-to-noise to measure 'weak' absorbers , 2009, Optical Engineering + Applications.

[175]  A. Laskin Electron Beam Analysis and Microscopy of Individual Particles , 2011 .