Causal information quantification of prominent dynamical features of biological neurons

Neurons tend to fire a spike when they are near a bifurcation from the resting state to spiking activity. It is a delicate balance between noise, dynamic currents and initial condition that determines the phase diagram of neural activity. Many possible ionic mechanisms can be accounted for as the source of spike generation. Moreover, the biophysics and the dynamics behind it can usually be described through a phase diagram that involves membrane voltage versus the activation variable of the ionic channel. In this paper, we present a novel methodology to characterize the dynamics of this system, which takes into account the fine temporal ‘structures’ of the complex neuronal signals. This allows us to accurately distinguish the most fundamental properties of neurophysiological neurons that were previously described by Izhikevich considering the phase-space trajectory, using a time causal space: statistical complexity versus Fisher information versus Shannon entropy.

[1]  Osvaldo A. Rosso,et al.  Generalized statistical complexity measures: Geometrical and analytical properties , 2006 .

[2]  Osvaldo A. Rosso,et al.  Ambiguities in Bandt–Pompe’s methodology for local entropic quantifiers , 2012 .

[3]  Alejandra Figliola,et al.  Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene , 2010 .

[4]  M. C. Soriano,et al.  Permutation-information-theory approach to unveil delay dynamics from time-series analysis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[6]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[7]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[8]  A. Thiele,et al.  Attention – oscillations and neuropharmacology , 2009, The European journal of neuroscience.

[9]  Cristina Masoller,et al.  Detecting and quantifying temporal correlations in stochastic resonance via information theory measures , 2009 .

[10]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[11]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[12]  Marc-Thorsten Hütt,et al.  Combining spiral and target wave detection to analyze excitable media dynamics , 2010 .

[13]  Osvaldo A. Rosso,et al.  Contrasting chaos with noise via local versus global information quantifiers , 2012 .

[14]  S. Saitoh,et al.  Epigenetic Inactivation and Subsequent Heterochromatinization of a Centromere Stabilize Dicentric Chromosomes , 2012, Current Biology.

[15]  M. C. Soriano,et al.  Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Osvaldo A. Rosso,et al.  Noise versus chaos in a causal Fisher-Shannon plane , 2015, 1510.06950.

[17]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[18]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[19]  B. Frieden Science from Fisher Information , 2004 .

[20]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[21]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[22]  Mathieu Sinn,et al.  Ordinal analysis of time series , 2005 .

[23]  Osvaldo A. Rosso,et al.  Entropy-Complexity Characterization of Brain Development in Chickens , 2014, Entropy.

[24]  Osvaldo A. Rosso,et al.  Efficiency characterization of a large neuronal network: A causal information approach , 2013, 1304.0399.

[25]  Carl S. McTague,et al.  The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. , 2008, Chaos.

[26]  Simon R. Schultz,et al.  Statistical modelling of higher-order correlations in pools of neural activity , 2012, 1211.6348.

[27]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[28]  Stefano Panzeri,et al.  The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Leandro Pardo,et al.  Discretization problems on generalized entropies and R-divergences , 1994, Kybernetika.

[30]  Rodolfo R. Llinás,et al.  Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective , 2014, Front. Cell. Neurosci..

[31]  Mokshay M. Madiman,et al.  Fisher Information, Compound Poisson Approximation, and the Poisson Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[32]  Osvaldo A. Rosso,et al.  Info-quantifiers’ map-characterization revisited , 2010 .

[33]  K. Ferentinos,et al.  Discrete approximations to the Csiszár, Renyi, and Fisher measures of information , 1986 .

[34]  Massimiliano Zanin,et al.  Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review , 2012, Entropy.

[35]  I. Grosse,et al.  Analysis of symbolic sequences using the Jensen-Shannon divergence. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  J. Crutchfield,et al.  Measures of statistical complexity: Why? , 1998 .

[37]  G. Buzsáki Rhythms of the brain , 2006 .

[38]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[39]  M. C. Soriano,et al.  Time Scales of a Chaotic Semiconductor Laser With Optical Feedback Under the Lens of a Permutation Information Analysis , 2011, IEEE Journal of Quantum Electronics.

[40]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[41]  Fernando Montani,et al.  Quantifying higher-order correlations in a neuronal pool , 2015 .

[42]  Luciano Zunino,et al.  Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution , 2013 .

[43]  Cristina Masoller,et al.  Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Vikaas S Sohal,et al.  Intrinsic and Synaptic Dynamics Interact to Generate Emergent Patterns of Rhythmic Bursting in Thalamocortical Neurons , 2006, The Journal of Neuroscience.

[45]  C. Miniussi,et al.  The Functional Importance of Rhythmic Activity in the Brain , 2012, Current Biology.

[46]  Eugene M. Izhikevich,et al.  Polychronization: Computation with Spikes , 2006, Neural Computation.

[47]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[48]  S. Asli Özgün-Koca,et al.  A Historical Perspective from "a" to "c" , 2010 .

[49]  Audrey L. Mayer,et al.  Fisher Information and dynamic regime changes in ecological systems , 2006 .

[50]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[51]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[52]  Osvaldo A. Rosso,et al.  Intensive entropic non-triviality measure , 2004 .