16 SUBDIVISIONS AND TRIANGULATIONS OF POLYTOPES

Our treatment is very combinatorial. In particular, instead of regarding a subdivision as a set of polytopes we regard it as a set of subsets of V , whose convex hulls subdivide P . This may appear to be an unnecessary complication at first, but it has advantages in the long run. It also relates this chapter to Chapter 6 (oriented matroids). For more application-oriented treatments of triangulations see Chapters 27 and 29. A general reference for the topics in this chapter is [DRS10].

[1]  Jörg Rambau,et al.  Triangulations of cyclic polytopes and higher Bruhat orders , 1997 .

[2]  János Pach,et al.  Cell decomposition of polytopes by bending , 1988 .

[3]  Francisco Santos,et al.  Many non-equivalent realizations of the associahedron , 2011, Comb..

[4]  Francisco Santos,et al.  The Cayley Trick and Triangulations of Products of Simplices , 2003 .

[5]  Silke Horn,et al.  A Topological Representation Theorem for tropical oriented matroids , 2012, J. Comb. Theory, Ser. A.

[6]  Günter M. Ziegler,et al.  On the Maximal Width of Empty Lattice Simplices , 2000, Eur. J. Comb..

[7]  Francisco Santos,et al.  The finiteness threshold width of lattice polytopes , 2016, Transactions of the American Mathematical Society, Series B.

[8]  J. Hudson Piecewise linear topology , 1966 .

[9]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[10]  Gaku Liu,et al.  A Zonotope and a Product of Two Simplices with Disconnected Flip Graphs , 2016, Discret. Comput. Geom..

[11]  Louis J. Billera,et al.  Triangulations of oriented matroids and convex polytopes , 1984 .

[12]  Winfried Bruns,et al.  Normality and covering properties of affine semigroups , 1999 .

[13]  I. G. MacDonald,et al.  CONVEX POLYTOPES AND THE UPPER BOUND CONJECTURE , 1973 .

[14]  Jörg Rambau,et al.  Computing Triangulations Using Oriented Matroids , 2003, Algebra, Geometry, and Software Systems.

[15]  F. Santos Recent progress on the combinatorial diameter of polytopes and simplicial complexes , 2013, 1307.5900.

[16]  G. Ziegler,et al.  All toric local complete intersection singularities admit projective crepant resolutions , 2001 .

[17]  L. Pournin The diameter of associahedra , 2012, 1207.6296.

[18]  Юрий Рэмович Романовский,et al.  О регулярных триангуляциях невыпуклых многогранников@@@Regular triangulations of non-convex polytopes , 2002 .

[19]  András Sebö,et al.  An Introduction to Empty Lattice Simplices , 1999, IPCO.

[20]  P. McMullen,et al.  A generalized lower-bound conjecture for simplicial polytopes , 1971 .

[21]  R. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[22]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[23]  Jörg Rambau,et al.  TOPCOM: Triangulations of Point Configurations and Oriented Matroids , 2002 .

[24]  Francisco Santos,et al.  The Graph of Triangulations of a Point Configuration with d +4 Vertices Is 3-Connected , 2000, Discret. Comput. Geom..

[25]  G. Ziegler,et al.  Unimodular triangulations of dilated 3-polytopes , 2013, 1304.7296.

[26]  Tamal K. Dey On Counting Triangulations in D Dimensions , 1993, Comput. Geom..

[27]  Jesús A. De Loera,et al.  The polytope of all triangulations of a point configuration , 1996, Documenta Mathematica.

[28]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[29]  Mary Ellen Rudin,et al.  An unshellable triangulation of a tetrahedron , 1958 .

[30]  Michael R. Anderson,et al.  Simplexity of the cube , 1996, Discret. Math..

[31]  Birkett Huber,et al.  The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings , 2000 .

[32]  Lionel Pournin,et al.  The Flip-Graph of the 4-Dimensional Cube is Connected , 2012, Discret. Comput. Geom..

[33]  John F. Sallee A triangulation of the n-cube , 1982, Discret. Math..

[34]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[35]  Victor Reiner,et al.  The Generalized Baues Problem , 1999 .

[36]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[37]  Gnter M. Ziegler,et al.  Zonotopal Tilings and the Bohne-Dress Theorem , 1993 .

[38]  Jesús A. De Loera Nonregular triangulations of products of simplices , 1996, Discret. Comput. Geom..

[39]  N. Steenrod,et al.  Foundations of Algebraic Topology , 1952 .

[40]  Thomas Lam,et al.  Alcoved Polytopes, I , 2007, Discret. Comput. Geom..

[41]  K. S. Sarkaria,et al.  On Primitive Subdivisions of an Elementary Tetrahedron , 2003 .

[42]  Carl W. Lee,et al.  The Numbers of Faces of Polytope Pairs and Unbounded Polyhedra , 1981, Eur. J. Comb..

[43]  Carl W. Lee,et al.  On the numbers of faces of low-dimensional regular triangulations and shellable balls , 2011 .

[44]  J. Kantor,et al.  On empty lattice simplices in dimension 4 , 2009, 0912.5310.

[45]  Bernd Sturmfels,et al.  The hyperdeterminant and triangulations of the 4-cube , 2006, Math. Comput..

[46]  Mike Develin,et al.  Tropical hyperplane arrangements and oriented matroids , 2007, 0706.2920.

[47]  David A. Cox,et al.  The topology of toric varieties , 2011 .

[48]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[49]  Satoshi Murai,et al.  On the generalized lower bound conjecture for polytopes and spheres , 2012, 1203.1720.

[50]  R. Stanley The number of faces of a simplicial convex polytope , 1980 .

[51]  Bernd Sturmfels,et al.  Oriented Matroids: Notation , 1999 .

[52]  John F. Sallee The Middle-Cut Triangulations of the n-Cube , 1984 .

[53]  Carl W. Lee,et al.  The Associahedron and Triangulations of the n-gon , 1989, Eur. J. Comb..

[54]  F. Santos Non-connected toric Hilbert schemes , 2002, math/0204044.

[55]  Francisco Santos,et al.  The Number of Triangulations of the Cyclic Polytope C (n , n -4) , 2002, Discret. Comput. Geom..

[56]  George B. Dantzig,et al.  Triangulations (tilings) and certain block triangular matrices , 1985, Math. Program..

[57]  F. Knudsen Construction of nice polyhedral subdivisions , 1973 .

[58]  Gaku Liu A counterexample to the extension space conjecture for realizable oriented matroids , 2016, Journal of the London Mathematical Society.

[59]  Alexander E. Litvak,et al.  The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..

[60]  Robert B. Hughes Minimum-cardinality triangulations of the d-cube for d=5 and d=6 , 1993, Discret. Math..

[61]  D. Barnette A proof of the lower bound conjecture for convex polytopes. , 1973 .

[62]  Emile E. Anclin An upper bound for the number of planar lattice triangulations , 2003, J. Comb. Theory, Ser. A.

[63]  Mark Haiman,et al.  A simple and relatively efficient triangulation of then-cube , 1991, Discret. Comput. Geom..

[64]  J. Sanders,et al.  The Stanley decomposition of the harmonic oscillator , 1988 .

[65]  Jörg Rambau,et al.  Projections of polytopes and the generalized baues conjecture , 1996, Discret. Comput. Geom..

[66]  Francisco Santos,et al.  Triangulations of oriented matroids , 2002 .

[67]  Rekha R. Thomas,et al.  Combinatorics of the Toric Hilbert Scheme , 2002, Discret. Comput. Geom..

[68]  F. Santos A point set whose space of triangulations is disconnected , 2000 .

[69]  Samuel Kolins,et al.  f-Vectors of Triangulated Balls , 2009, Discret. Comput. Geom..

[70]  Incremental topological flipping works for regular triangulations , 1992, SCG '92.

[71]  Bernd Sturmfels,et al.  Constructions and complexity of secondary polytopes , 1990 .

[72]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[73]  M. Todd The Computation of Fixed Points and Applications , 1976 .

[74]  Margaret M. Bayer Equidecomposable and weakly neighborly polytopes , 1993 .

[75]  Bernd Sturmfels,et al.  Cellular strings on polytopes , 1994 .

[76]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[77]  Peter McMullen,et al.  Triangulations of Simplicial Polytopes , 2004 .

[78]  F. Santos,et al.  Existence of unimodular triangulations — positive results , 2014, 1405.1687.

[79]  B. Sturmfels Gröbner bases of toric varieties , 1991 .

[80]  Richard P. Stanley,et al.  Subdivisions and local $h$-vectors , 1992 .

[81]  Margaret M. Bayer,et al.  Combinatorial Aspects of Convex Polytopes , 1993 .

[82]  Francisco Santos,et al.  Asymptotically Efficient Triangulations of the d-Cube , 2002, CCCG.

[83]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[84]  Kalle Karu Hard Lefschetz theorem for nonrational polytopes , 2001 .

[85]  Warren D. Smith A Lower Bound for the Simplexity of then-Cube via Hyperbolic Volumes , 2000, Eur. J. Comb..