16 SUBDIVISIONS AND TRIANGULATIONS OF POLYTOPES
暂无分享,去创建一个
[1] Jörg Rambau,et al. Triangulations of cyclic polytopes and higher Bruhat orders , 1997 .
[2] János Pach,et al. Cell decomposition of polytopes by bending , 1988 .
[3] Francisco Santos,et al. Many non-equivalent realizations of the associahedron , 2011, Comb..
[4] Francisco Santos,et al. The Cayley Trick and Triangulations of Products of Simplices , 2003 .
[5] Silke Horn,et al. A Topological Representation Theorem for tropical oriented matroids , 2012, J. Comb. Theory, Ser. A.
[6] Günter M. Ziegler,et al. On the Maximal Width of Empty Lattice Simplices , 2000, Eur. J. Comb..
[7] Francisco Santos,et al. The finiteness threshold width of lattice polytopes , 2016, Transactions of the American Mathematical Society, Series B.
[8] J. Hudson. Piecewise linear topology , 1966 .
[9] Charles L. Lawson,et al. Transforming triangulations , 1972, Discret. Math..
[10] Gaku Liu,et al. A Zonotope and a Product of Two Simplices with Disconnected Flip Graphs , 2016, Discret. Comput. Geom..
[11] Louis J. Billera,et al. Triangulations of oriented matroids and convex polytopes , 1984 .
[12] Winfried Bruns,et al. Normality and covering properties of affine semigroups , 1999 .
[13] I. G. MacDonald,et al. CONVEX POLYTOPES AND THE UPPER BOUND CONJECTURE , 1973 .
[14] Jörg Rambau,et al. Computing Triangulations Using Oriented Matroids , 2003, Algebra, Geometry, and Software Systems.
[15] F. Santos. Recent progress on the combinatorial diameter of polytopes and simplicial complexes , 2013, 1307.5900.
[16] G. Ziegler,et al. All toric local complete intersection singularities admit projective crepant resolutions , 2001 .
[17] L. Pournin. The diameter of associahedra , 2012, 1207.6296.
[18] Юрий Рэмович Романовский,et al. О регулярных триангуляциях невыпуклых многогранников@@@Regular triangulations of non-convex polytopes , 2002 .
[19] András Sebö,et al. An Introduction to Empty Lattice Simplices , 1999, IPCO.
[20] P. McMullen,et al. A generalized lower-bound conjecture for simplicial polytopes , 1971 .
[21] R. Tarjan,et al. Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.
[22] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[23] Jörg Rambau,et al. TOPCOM: Triangulations of Point Configurations and Oriented Matroids , 2002 .
[24] Francisco Santos,et al. The Graph of Triangulations of a Point Configuration with d +4 Vertices Is 3-Connected , 2000, Discret. Comput. Geom..
[25] G. Ziegler,et al. Unimodular triangulations of dilated 3-polytopes , 2013, 1304.7296.
[26] Tamal K. Dey. On Counting Triangulations in D Dimensions , 1993, Comput. Geom..
[27] Jesús A. De Loera,et al. The polytope of all triangulations of a point configuration , 1996, Documenta Mathematica.
[28] S. Robins,et al. Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .
[29] Mary Ellen Rudin,et al. An unshellable triangulation of a tetrahedron , 1958 .
[30] Michael R. Anderson,et al. Simplexity of the cube , 1996, Discret. Math..
[31] Birkett Huber,et al. The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings , 2000 .
[32] Lionel Pournin,et al. The Flip-Graph of the 4-Dimensional Cube is Connected , 2012, Discret. Comput. Geom..
[33] John F. Sallee. A triangulation of the n-cube , 1982, Discret. Math..
[34] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[35] Victor Reiner,et al. The Generalized Baues Problem , 1999 .
[36] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[37] Gnter M. Ziegler,et al. Zonotopal Tilings and the Bohne-Dress Theorem , 1993 .
[38] Jesús A. De Loera. Nonregular triangulations of products of simplices , 1996, Discret. Comput. Geom..
[39] N. Steenrod,et al. Foundations of Algebraic Topology , 1952 .
[40] Thomas Lam,et al. Alcoved Polytopes, I , 2007, Discret. Comput. Geom..
[41] K. S. Sarkaria,et al. On Primitive Subdivisions of an Elementary Tetrahedron , 2003 .
[42] Carl W. Lee,et al. The Numbers of Faces of Polytope Pairs and Unbounded Polyhedra , 1981, Eur. J. Comb..
[43] Carl W. Lee,et al. On the numbers of faces of low-dimensional regular triangulations and shellable balls , 2011 .
[44] J. Kantor,et al. On empty lattice simplices in dimension 4 , 2009, 0912.5310.
[45] Bernd Sturmfels,et al. The hyperdeterminant and triangulations of the 4-cube , 2006, Math. Comput..
[46] Mike Develin,et al. Tropical hyperplane arrangements and oriented matroids , 2007, 0706.2920.
[47] David A. Cox,et al. The topology of toric varieties , 2011 .
[48] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[49] Satoshi Murai,et al. On the generalized lower bound conjecture for polytopes and spheres , 2012, 1203.1720.
[50] R. Stanley. The number of faces of a simplicial convex polytope , 1980 .
[51] Bernd Sturmfels,et al. Oriented Matroids: Notation , 1999 .
[52] John F. Sallee. The Middle-Cut Triangulations of the n-Cube , 1984 .
[53] Carl W. Lee,et al. The Associahedron and Triangulations of the n-gon , 1989, Eur. J. Comb..
[54] F. Santos. Non-connected toric Hilbert schemes , 2002, math/0204044.
[55] Francisco Santos,et al. The Number of Triangulations of the Cyclic Polytope C (n , n -4) , 2002, Discret. Comput. Geom..
[56] George B. Dantzig,et al. Triangulations (tilings) and certain block triangular matrices , 1985, Math. Program..
[57] F. Knudsen. Construction of nice polyhedral subdivisions , 1973 .
[58] Gaku Liu. A counterexample to the extension space conjecture for realizable oriented matroids , 2016, Journal of the London Mathematical Society.
[59] Alexander E. Litvak,et al. The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..
[60] Robert B. Hughes. Minimum-cardinality triangulations of the d-cube for d=5 and d=6 , 1993, Discret. Math..
[61] D. Barnette. A proof of the lower bound conjecture for convex polytopes. , 1973 .
[62] Emile E. Anclin. An upper bound for the number of planar lattice triangulations , 2003, J. Comb. Theory, Ser. A.
[63] Mark Haiman,et al. A simple and relatively efficient triangulation of then-cube , 1991, Discret. Comput. Geom..
[64] J. Sanders,et al. The Stanley decomposition of the harmonic oscillator , 1988 .
[65] Jörg Rambau,et al. Projections of polytopes and the generalized baues conjecture , 1996, Discret. Comput. Geom..
[66] Francisco Santos,et al. Triangulations of oriented matroids , 2002 .
[67] Rekha R. Thomas,et al. Combinatorics of the Toric Hilbert Scheme , 2002, Discret. Comput. Geom..
[68] F. Santos. A point set whose space of triangulations is disconnected , 2000 .
[69] Samuel Kolins,et al. f-Vectors of Triangulated Balls , 2009, Discret. Comput. Geom..
[70] Incremental topological flipping works for regular triangulations , 1992, SCG '92.
[71] Bernd Sturmfels,et al. Constructions and complexity of secondary polytopes , 1990 .
[72] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[73] M. Todd. The Computation of Fixed Points and Applications , 1976 .
[74] Margaret M. Bayer. Equidecomposable and weakly neighborly polytopes , 1993 .
[75] Bernd Sturmfels,et al. Cellular strings on polytopes , 1994 .
[76] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[77] Peter McMullen,et al. Triangulations of Simplicial Polytopes , 2004 .
[78] F. Santos,et al. Existence of unimodular triangulations — positive results , 2014, 1405.1687.
[79] B. Sturmfels. Gröbner bases of toric varieties , 1991 .
[80] Richard P. Stanley,et al. Subdivisions and local $h$-vectors , 1992 .
[81] Margaret M. Bayer,et al. Combinatorial Aspects of Convex Polytopes , 1993 .
[82] Francisco Santos,et al. Asymptotically Efficient Triangulations of the d-Cube , 2002, CCCG.
[83] P. Mani,et al. Shellable Decompositions of Cells and Spheres. , 1971 .
[84] Kalle Karu. Hard Lefschetz theorem for nonrational polytopes , 2001 .
[85] Warren D. Smith. A Lower Bound for the Simplexity of then-Cube via Hyperbolic Volumes , 2000, Eur. J. Comb..