Microstructure, mechanical properties, Electrical resistivity, and corrosion behavior of (AlCr)x(HfMoNbZr)1-x films

[1]  C. Hsueh,et al.  Effects of aluminum addition on microstructures and mechanical properties of NbTiVZr high-entropy alloy nitride films , 2023, Intermetallics.

[2]  P. Eklund,et al.  Evolution of microstructure and properties of TiNbCrAlHfN films grown by unipolar and bipolar high-power impulse magnetron co-sputtering: The role of growth temperature and ion bombardment , 2023, Surface and Coatings Technology.

[3]  Zhibing Zhang,et al.  Thermal stability and corrosion behavior of a novel Zr22.5Ti22.5Hf22.5Ni22.5Ta10 high-entropy amorphous alloy , 2023, Corrosion Science.

[4]  U. Helmersson,et al.  On selective ion acceleration in bipolar HiPIMS: A case study of (Al,Cr)2O3 film growth , 2022, Surface & Coatings Technology.

[5]  Qian Zhao,et al.  Corrosion and passive behavior of AlxCrFeNi3-x (x=0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment , 2022, Corrosion Science.

[6]  R. A. Antunes,et al.  A review on Corrosion of High Entropy Alloys: Exploring the Interplay Between Corrosion Properties, Alloy Composition, Passive Film Stability and Materials Selection , 2022, Materials Research.

[7]  D. Primetzhofer,et al.  Multicomponent TixNbCrAl nitride films deposited by dc and high-power impulse magnetron sputtering , 2021, Surface and Coatings Technology.

[8]  Yu Fu,et al.  Review—Corrosion-Resistant High-Entropy Alloy Coatings: A Review , 2021, Journal of the Electrochemical Society.

[9]  Haibo Guo,et al.  Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCuxNiTiZr0.75 high entropy alloy films , 2021 .

[10]  Xiaofu Zhang,et al.  Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)x(NbTa)1−x high-entropy alloy thin films , 2021, Nano Research.

[11]  A. Motallebzadeh,et al.  In vitro biocompatibility evaluation of Ti1.5ZrTa0.5Nb0.5Hf0.5 refractory high-entropy alloy film for orthopedic implants: Microstructural, mechanical properties and corrosion behavior , 2021 .

[12]  U. Helmersson,et al.  Bipolar HiPIMS: The role of capacitive coupling in achieving ion bombardment during growth of dielectric thin films , 2021, Surface and Coatings Technology.

[13]  Binglun Yin,et al.  A ductility criterion for bcc high entropy alloys , 2021, Journal of the Mechanics and Physics of Solids.

[14]  Li-Chun Chang,et al.  Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics , 2021 .

[15]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[16]  Li-Chun Chang,et al.  Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content , 2020, Surface and Coatings Technology.

[17]  Guosheng Huang,et al.  Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment , 2020 .

[18]  P. Liaw,et al.  High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys , 2020 .

[19]  J. Saal,et al.  Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film , 2020 .

[20]  Xiubing Liang,et al.  First-principle calculation investigation of NbMoTaW based refractory high entropy alloys , 2020 .

[21]  B. S. Murty,et al.  Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures , 2020 .

[22]  H. Cai,et al.  Microstructure, mechanical and physical properties of FeCoNiAlMnW high-entropy films deposited by magnetron sputtering , 2020 .

[23]  L. Hultman,et al.  X-ray photoelectron spectroscopy: Towards reliable binding energy referencing , 2020, Progress in Materials Science.

[24]  G. Jin,et al.  Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films , 2020, Surface Engineering.

[25]  Chaur-Jeng Wang,et al.  Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings , 2019, Surface and Coatings Technology.

[26]  Wei Zhang,et al.  Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel , 2019, Surface and Coatings Technology.

[27]  S. Hong,et al.  Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys , 2019, Applied Surface Science.

[28]  Zhaobing Cai,et al.  A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property , 2019, Applied Surface Science.

[29]  M. Son,et al.  Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films , 2019, International Journal of Refractory Metals and Hard Materials.

[30]  L. Hultman,et al.  Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak , 2018, Applied Surface Science.

[31]  J. Shang,et al.  Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films , 2018 .

[32]  Christopher D. Taylor,et al.  Integrated computational materials engineering of corrosion resistant alloys , 2018, npj Materials Degradation.

[33]  Jian Zhou,et al.  Strengthening mechanism of aluminum on elastic properties of NbVTiZr high-entropy alloys , 2018 .

[34]  Karin A. Dahmen,et al.  Serration and noise behaviors in materials , 2017 .

[35]  U. K. Mudali,et al.  Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium , 2017 .

[36]  Jinghao Li,et al.  Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding , 2017 .

[37]  P. Liaw,et al.  Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys , 2017 .

[38]  A. Pandurangan,et al.  Synthesis of Hf/SBA-15 Lewis acid catalyst for converting glycerol to value-added chemicals , 2017, Journal of Porous Materials.

[39]  J. Li,et al.  Coatings of FeAlCoCuNiV high entropy alloy , 2016 .

[40]  Karin A. Dahmen,et al.  Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems , 2013 .

[41]  J. Yeh,et al.  Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100 −xNx , 2012 .

[42]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[43]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[44]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[45]  F. Zahid,et al.  Resistivity of thin Cu films with surface roughness , 2009 .

[46]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[47]  A. Matthews,et al.  On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour , 2000 .

[48]  M. Lohrengel,et al.  Stability, reactivity and breakdown of passive films. Problems of recent and future research , 2000 .

[49]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  P. Pistorius,et al.  ASPECTS OF THE EFFECTS OF ELECTROLYTE COMPOSITION ON THE OCCURRENCE OF METASTABLE PITTING ON STAINLESS STEEL , 1994 .

[53]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[54]  Digby D. Macdonald,et al.  A Point Defect Model for Anodic Passive Films II . Chemical Breakdown and Pit Initiation , 1981 .

[55]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[56]  M. Stern,et al.  Electrochemical Polarization I . A Theoretical Analysis of the Shape of Polarization Curves , 1957 .