On distributed optimization under inequality constraints via Lagrangian primal-dual methods

We consider a multi-agent convex optimization problem where agents are to minimize a sum of local objective functions subject to a global inequality constraint and a global constraint set. To deal with this, we devise a distributed primal-dual subgradient algorithm which is based on the characterization of the primal-dual optimal solutions as the saddle points of the Lagrangian function. This algorithm allows the agents to exchange information over networks with time-varying topologies and asymptotically agree on a pair of primal-dual optimal solutions and the optimal value.

[1]  Rayadurgam Srikant,et al.  The Mathematics of Internet Congestion Control , 2003 .

[2]  Angelia Nedic,et al.  Subgradient Methods for Saddle-Point Problems , 2009, J. Optimization Theory and Applications.

[3]  Asuman E. Ozdaglar,et al.  Distributed Subgradient Methods for Multi-Agent Optimization , 2009, IEEE Transactions on Automatic Control.

[4]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[5]  Sonia Martínez,et al.  On Distributed Convex Optimization Under Inequality and Equality Constraints , 2010, IEEE Transactions on Automatic Control.

[6]  Sonia Martínez,et al.  Discrete-time dynamic average consensus , 2010, Autom..

[7]  John N. Tsitsiklis,et al.  Problems in decentralized decision making and computation , 1984 .

[8]  Asuman E. Ozdaglar,et al.  Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods , 2008, SIAM J. Optim..

[9]  Anders Rantzer,et al.  Using Game Theory for Distributed Control Engineering , 2008 .

[10]  A. Banerjee Convex Analysis and Optimization , 2006 .

[11]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[12]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[13]  A. Robert Calderbank,et al.  Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures , 2007, Proceedings of the IEEE.

[14]  Peng Yang,et al.  Stability and Convergence Properties of Dynamic Average Consensus Estimators , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[15]  Derong Liu The Mathematics of Internet Congestion Control , 2005, IEEE Transactions on Automatic Control.

[16]  Karl Henrik Johansson,et al.  Subgradient methods and consensus algorithms for solving convex optimization problems , 2008, 2008 47th IEEE Conference on Decision and Control.

[17]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[18]  Angelia Nedic,et al.  Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models , 2008, IEEE Transactions on Automatic Control.

[19]  Minghui Zhu,et al.  On distributed optimization under inequality and equality constraints via penalty primal-dual methods , 2010, Proceedings of the 2010 American Control Conference.

[20]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[21]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[22]  Magnus Egerstedt,et al.  Optimization of Multi-agent Motion Programs with Applications to Robotic Marionettes , 2009, HSCC.

[23]  Panos M. Pardalos,et al.  Convex optimization theory , 2010, Optim. Methods Softw..

[24]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[25]  John N. Tsitsiklis,et al.  Convergence Speed in Distributed Consensus and Averaging , 2009, SIAM J. Control. Optim..

[26]  Asuman E. Ozdaglar,et al.  Constrained Consensus and Optimization in Multi-Agent Networks , 2008, IEEE Transactions on Automatic Control.