Tuning Guidelines of a Dynamic Matrix Controller for Integrating (Non-Self-Regulating) Processes

Designing a multivariable dynamic matrix conrtoller (DMC) controller for integrating processes is challenging because of the number of tuning parameters that affect the closed-loop performance. These tuning parameters required to implement DMC include the sample time; the prediction, model, and control horizons; the controlled variable weights; and the move suppression coefficients. The move suppression coefficients are used as the key tuning parameters to obtain a desirable DMC performance. This paper derives and demonstrates expressions for computing the complete set of tuning parameters for integrating processes. A novel contribution of this work is the derivation of an analytical expression for computing the move suppression coefficients based on the process model and the other DMC design parameters. The tuning rules are demonstrated on simulated processes including a constrained multivariable process simulation that displays integrating characteristics.

[1]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[2]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[3]  D. Seborg,et al.  Predictive control based on discrete convolution models , 1983 .

[4]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[5]  Carlos E. Garcia,et al.  QUADRATIC PROGRAMMING SOLUTION OF DYNAMIC MATRIX CONTROL (QDMC) , 1986 .

[6]  Babatunde A. Ogunnaike,et al.  Dynamic matrix control: a nonstochastic, industrial process control technique with parallels in applied statistics , 1986 .

[7]  Dale E. Seborg,et al.  Predictive controller design for single-input/single-output (SISO) systems , 1988 .

[8]  Carlos E. García,et al.  Fundamental Process Control , 1988 .

[9]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[10]  I-Lung Chien,et al.  Consider IMC Tuning to Improve Controller Performance , 1990 .

[11]  W. Luyben,et al.  Tuning PI controllers for integrator/dead time processes , 1992 .

[12]  Yash P. Gupta Characteristic equations and robust stability of a simplified predictive control algorithm , 1993 .

[13]  Manfred Morari,et al.  State-space interpretation of model predictive control , 1994, Autom..

[14]  Sigurd Skogestad,et al.  Limitations of dynamic matrix control , 1995 .

[15]  D. Cooper,et al.  A Tuning Strategy for Unconstrained SISO Model Predictive Control , 1997 .

[16]  Yash P. Gupta,et al.  Control of integrating processes using dynamic matrix control , 1998 .

[17]  D. Cooper,et al.  A Tuning Strategy for Unconstrained Multivariable Model Predictive Control , 1998 .

[18]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .