Quasiperiodic trajectories for a multidimensional anharmonic classical Hamiltonian excited above the unimolecular threshold

Classical trajectories are used to investigate the internal dynamics of the model molecule H–C–C. Two different anharmonic potential energy surfaces which exhibit intrinsic non‐RRKM lifetimes are found to contain a large number of quasiperiodic trajectories at energies in excess of H–C–C→H+C=C dissociation threshold. Rotational excitation of H–C–C does not destroy the quasiperiodic motion. The quasiperiodic trajectories are displayed by projections into different coordinate planes and by surfaces of section. The relationship of these results to unimolecular rate theory is briefly discussed.

[1]  N. Handy,et al.  On the quantum mechanical implications of classical ergodicity , 1979 .

[2]  Donald W. Noid,et al.  Semiclassical calculation of bound states in multidimensional systems with Fermi resonance , 1979 .

[3]  William L. Hase,et al.  Trajectory studies of the molecular dynamics of ethyl radical decomposition , 1979 .

[4]  C. Cerjan,et al.  Critical point analysis of instabilities in Hamiltonian systems: Classical mechanics of stochastic intramolecular energy transfer , 1979 .

[5]  C. Parr,et al.  Classical stretching dynamics in methylene , 1979 .

[6]  K. Haensel The stability of molecular motion and intramolecular energy transfer , 1979 .

[7]  J. Weisshaar,et al.  Collisionless decay, vibrational relaxation, and intermediate case quenching of S1 formaldehyde , 1978 .

[8]  R. Zare,et al.  Radiationless processes in a molecular beam: Time resolved emission from benzophenone , 1978 .

[9]  E. Grant,et al.  Dynamical effects in unimolecular decomposition: A classical trajectory study of the dissociation of C2H6. , 1978 .

[10]  W. Gelbart,et al.  Local mode structure of the water molecule , 1977 .

[11]  A. Kuppermann,et al.  Classical dynamics of triatomic systems: Energized harmonic molecules , 1977 .

[12]  L. Raff,et al.  Inelastic scattering calculations in polyatomic systems using an ab initio intermolecular potential energy surface: The , 1977 .

[13]  J. D. Mcdonald,et al.  Classical trajectory study of internal energy distributions in unimolecular processes , 1976 .

[14]  W. Hase,et al.  Trajectory studies of unimolecular processes. II. Dynamics of chloroacetylene dissociation , 1976 .

[15]  S. Rice,et al.  Quantum ergodicity and vibrational relaxation in isolated molecules , 1974 .

[16]  D. L. Bunker,et al.  Methyl isocyanide is probably a non-RRKM molecule , 1971 .

[17]  D. L. Bunker,et al.  Monte Carlo Calculations. VI. A Re‐evaluation of the RRKM Theory of Unimolecular Reaction Rates , 1968 .

[18]  N. Blais,et al.  Monte Carlo Calculations. II. The Reactions of Alkali Atoms with Methyl Iodide , 1962 .

[19]  W. Hase,et al.  Trajectory studies of model H–C–C→H+C=C dissociation. I. Random vibrational excitation , 1980 .

[20]  V. Szebehely,et al.  Instabilities in Dynamical Systems , 1979 .

[21]  A. Zewail,et al.  Observation of high‐energy vibrational overtones of molecules in solids: Local modes and intramolecular relaxations , 1979 .

[22]  W. Miller Dynamics of Molecular Collisions , 1976 .

[23]  M. Karplus,et al.  Collision complex dynamics in alkali halide exchange reactions , 1973 .

[24]  W. Forst,et al.  Theory of Unimolecular Reactions , 1973 .

[25]  P. J. Robinson Unimolecular reactions , 1972 .

[26]  B. Rabinovitch,et al.  Elementary Gas Reactions , 1970 .

[27]  W. Dixon BMD : biomedical computer programs , 1967 .

[28]  D. L. Bunker Theory of Elementary Gas Reaction Rates , 1966 .