We demonstrate a fiber-optic 3D vector displacement sensor based on the monitoring of Bragg reflection from an eccentric grating inscribed in a depressed-cladding fiber using the femtosecond laser side-illumination and phase-mask technique. The compact sensing probe consists of a short section of depressed cladding fiber (DCF) containing eccentrically positioned fiber Bragg gratings. The eccentric grating breaks the cylindrical symmetry of the fiber cross-section and further has bending orientation-dependence. The generated fundamental resonance is strongly sensitive to bending of the fiber, and the direction of the bending plane can be determined from its responses. When integrated with axis strain monitoring, the sensor achieves a 3D vector displacement measurement via simple geometric analysis.