Cramér-Rao Bounds for SNR Estimation of Oversampled Linearly Modulated Signals

Most signal-to-noise ratio (SNR) estimators use the receiver matched filter output sampled at the symbol rate, an approach which does not preserve all information in the analog waveform due to aliasing. Thus, it is relevant to ask whether avoiding aliasing could improve SNR estimation. To this end, we compute the corresponding data-aided (DA) and nondata-aided (NDA) Cramér-Rao bounds (CRBs). We adopt a novel dual filter framework, which is shown to be information-preserving under suitable conditions and considerably simplifies the analysis. It is shown that the CRB can be substantially reduced by exploiting any available excess bandwidth, depending on the modulation scheme, the SNR range, and the estimator type (DA or NDA).

[1]  Jean Pierre Delmas Closed-Form Expressions of the Exact Cramer-Rao Bound for Parameter Estimation of BPSK, MSK, or QPSK Waveforms , 2006, IEEE Signal Processing Letters.

[2]  T. T. Soong,et al.  The joint estimation of signal and noise from the sum envelope , 1967, IEEE Trans. Inf. Theory.

[3]  Sofiène Affes,et al.  SNR Estimation Over SIMO Channels From Linearly Modulated Signals , 2010, IEEE Transactions on Signal Processing.

[4]  Carlos Mosquera,et al.  SNR Estimation for Multilevel Constellations Using Higher-Order Moments , 2010, IEEE Transactions on Signal Processing.

[5]  R. Michael Buehrer,et al.  On the impact of SNR estimation error on adaptive modulation , 2005, IEEE Communications Letters.

[6]  Umberto Mengali,et al.  Synchronization Techniques for Digital Receivers , 1997, Applications of Communications Theory.

[7]  Sofiène Affes,et al.  Moment-based SNR estimation over linearly-modulated wireless SIMO channels , 2010, IEEE Transactions on Wireless Communications.

[8]  Sofiène Affes,et al.  Cramer-Rao Lower Bounds for NDA SNR Estimates of Square QAM Modulated Transmissions , 2010, IEEE Transactions on Communications.

[9]  Cihan Tepedelenlioglu,et al.  SNR estimation for nonconstant modulus constellations , 2005, IEEE Transactions on Signal Processing.

[10]  Martin Leyh,et al.  In-service SNR estimation without symbol timing recovery for QPSK data transmission systems , 2007, IEEE Transactions on Wireless Communications.

[11]  Wilfried Gappmair,et al.  Cramer-Rao Lower Bound for Non-Data-Aided SNR Estimation of Linear Modulation Schemes , 2008, IEEE Transactions on Communications.

[12]  Gregori Vázquez,et al.  Second-order parameter estimation , 2005, IEEE Transactions on Signal Processing.

[13]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[14]  Mikael Skoglund,et al.  Uniformly Improving Maximum-Likelihood SNR Estimation of Known Signals in Gaussian Channels , 2014, IEEE Transactions on Signal Processing.

[15]  Roberto López-Valcarce,et al.  Sixth-Order Statistics-Based Non-Data-Aided SNR Estimation , 2007, IEEE Communications Letters.

[16]  A. Das NDA SNR estimation: CRLBs and EM based estimators , 2008, TENCON 2008 - 2008 IEEE Region 10 Conference.

[17]  Roberto López-Valcarce,et al.  Joint NDA Estimation of Carrier Frequency/Phase and SNR for Linearly Modulated Signals , 2010, IEEE Signal Processing Letters.

[18]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[19]  Petre Stoica,et al.  The Gaussian Data Assumption Leads to the Largest Cramér-Rao Bound [Lecture Notes] , 2011, IEEE Signal Processing Magazine.

[20]  Errol C. Caby An Introduction to Statistical Signal Processing , 2006, Technometrics.

[21]  Krishna Balachandran,et al.  Channel quality estimation and rate adaptation for cellular mobile radio , 1999, IEEE J. Sel. Areas Commun..

[22]  Author Active Interference Cancellation for OFDM Spectrum Sculpting : Linear Processing is Optimal , 2014 .

[23]  R. Gagliardi,et al.  PCM Data Reliability Monitoring Through Estimation of Signal-to-Noise Ratio , 1968 .

[24]  Norman C. Beaulieu,et al.  A comparison of SNR estimation techniques for the AWGN channel , 2000, IEEE Trans. Commun..

[25]  William Moran,et al.  Cramer-Rao lower bounds for QAM phase and frequency estimation , 2001, IEEE Trans. Commun..

[26]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[27]  Heinrich Meyr,et al.  Digital communication receivers - synchronization, channel estimation, and signal processing , 1997, Wiley series in telecommunications and signal processing.

[28]  Stephen G. Wilson,et al.  SNR mismatch and online estimation in turbo decoding , 1998, IEEE Trans. Commun..

[29]  R. Lopez-Valcarce,et al.  ML and EM algorithm for non-data-aided SNR estimation of linearly modulated signals , 2008, 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing.

[30]  Riccardo De Gaudenzi,et al.  Channel estimation and physical layer adaptation techniques for satellite networks exploiting adaptive coding and modulation , 2008, Int. J. Satell. Commun. Netw..

[31]  Roberto López-Valcarce,et al.  Cramer-Rao lower bound and EM algorithm for envelope-based SNR estimation of nonconstant modulus constellations , 2009, IEEE Transactions on Communications.

[32]  Nader Sheikholeslami Alagha,et al.  Cramer-Rao bounds of SNR estimates for BPSK and QPSK modulated signals , 2001, IEEE Communications Letters.

[33]  Andrea J. Goldsmith,et al.  Degrees of freedom in adaptive modulation: a unified view , 2001, IEEE Trans. Commun..

[34]  Bhaskar D. Rao,et al.  SNR and Noise Variance Estimation for MIMO Systems , 2012, IEEE Transactions on Signal Processing.

[35]  Gregori Vázquez,et al.  A Nondata-Aided SNR Estimation Technique for Multilevel Modulations Exploiting Signal Cyclostationarity , 2010, IEEE Transactions on Signal Processing.