MoS2 transistors with 1-nanometer gate lengths

A flatter route to shorter channels High-performance silicon transistors can have gate lengths as short as 5 nm before source-drain tunneling and loss of electrostatic control lead to unacceptable leakage current when the device is off. Desai et al. explored the use of MoS2 as a channel material, given that its electronic properties as thin layers should limit such leakage. A transistor with a 1-nm physical gate was constructed with a MoS2 bilayer channel and a single-walled carbon nanotube gate electrode. Excellent switching characteristics and an on-off state current ratio of ∼106 were observed. Science, this issue p. 99 Molybdenum disulfide transistors with carbon nanotube gate electrodes have channel lengths below the silicon scaling limit. Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~106. Simulations show an effective channel length of ~3.9 nm in the Off state and ~1 nm in the On state.

[1]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[2]  Aaron D. Franklin,et al.  Nanomaterials in transistors: From high-performance to thin-film applications , 2015, Science.

[3]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[4]  K. Roy,et al.  The Effects of Direct Source-to-Drain Tunneling and Variation in the Body Thickness on (100) and (110) Sub-10-nm Si Double-Gate Transistors , 2015, IEEE Electron Device Letters.

[5]  H. Wong,et al.  A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization , 2015, IEEE Transactions on Electron Devices.

[6]  L. Liao,et al.  Interface engineering for high-performance top-gated MoS 2 field effect transistors , 2014 .

[7]  Lei Liao,et al.  Interface Engineering for High‐Performance Top‐Gated MoS2 Field‐Effect Transistors , 2014, Advanced materials.

[8]  P. Sheng,et al.  Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures , 2014, Nature Communications.

[9]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[10]  C. Battaglia,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[11]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[12]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[13]  Darshana Wickramaratne,et al.  Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. , 2014, The Journal of chemical physics.

[14]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[15]  J. Rogers,et al.  Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates. , 2013, Nano letters.

[16]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[17]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[18]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[19]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[20]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[21]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[22]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[23]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[24]  H. Wong,et al.  Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes , 2009, IEEE Transactions on Nanotechnology.

[25]  G. Lo,et al.  Quantum Size Effects on Dielectric Constants and Optical Absorption of Ultrathin Silicon Films , 2008, IEEE Electron Device Letters.

[26]  J. Kinaret,et al.  A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay , 2008, Nanotechnology.

[27]  Hui Zhao,et al.  Analysis of the Effects of Fringing Electric Field on FinFET Device Performance and Structural Optimization Using 3-D Simulation , 2008, IEEE Transactions on Electron Devices.

[28]  Yang Liu,et al.  A Tight-Binding Study of the Ballistic Injection Velocity for Ultrathin-Body SOI MOSFETs , 2008, IEEE Transactions on Electron Devices.

[29]  J. Kavalieros,et al.  Integrated nanoelectronics for the future. , 2007, Nature materials.

[30]  Mark S. Lundstrom Notes on the Ballistic MOSFET , 2005 .

[31]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[32]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Lundstrom,et al.  Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays , 2004, cond-mat/0406494.

[34]  Mark S. Lundstrom,et al.  APPLIED PHYSICS: Enhanced: Moore's Law Forever? , 2003 .

[35]  J. Gilman,et al.  Nanotechnology , 2001 .

[36]  Toshitsugu Sakamoto,et al.  Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors , 2000 .

[37]  D. Frank,et al.  Generalized scale length for two-dimensional effects in MOSFETs , 1998, IEEE Electron Device Letters.

[38]  K. Lee,et al.  Extraction of metallurgical effective channel length in LDD MOSFET's , 1995 .

[39]  Y. Tosaka,et al.  Scaling theory for double-gate SOI MOSFET's , 1993 .

[40]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[41]  H. D. Barber Effective mass and intrinsic concentration in silicon , 1967 .

[42]  P. Harrop,et al.  The dielectric constant of zirconia , 1967 .

[43]  Farzan Jazaeri,et al.  Downscaling and Short Channel Effects in Twin Gate Junctionless Vertical Slit FETs , 2013 .

[44]  M. Randeria,et al.  The BCS-BEC crossover and the unitary fermi gas , 2012 .

[45]  Yuan Taur,et al.  MOSFET channel length: extraction and interpretation , 2000 .