Comparison of Statistical and Neural Classifiers and Their Applications to Optical Character Recogni

[1]  Richard Lippmann,et al.  Practical Characteristics of Neural Network and Conventional Pattern Classifiers on Artificial and Speech Problems , 1989, NIPS.

[2]  Steven J. Nowlan,et al.  Soft competitive adaptation: neural network learning algorithms based on fitting statistical mixtures , 1991 .

[3]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[4]  Bruce W. Suter,et al.  The multilayer perceptron as an approximation to a Bayes optimal discriminant function , 1990, IEEE Trans. Neural Networks.

[5]  James D. Keeler,et al.  A Self-Organizing Integrated Segmentation and Recognition Neural Net , 1991, NIPS.

[6]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[8]  Richard Lippmann,et al.  Review of Neural Networks for Speech Recognition , 1989, Neural Computation.

[9]  Hervé Bourlard,et al.  Continuous speech recognition , 1995, IEEE Signal Process. Mag..

[10]  James A. Pittman,et al.  Recognizing Hand-Printed Letters and Digits Using Backpropagation Learning , 1991, Neural Computation.

[11]  Harry Wechsler,et al.  From Statistics to Neural Networks: Theory and Pattern Recognition Applications , 1996 .

[12]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[13]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[14]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[15]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[16]  Michael I. Jordan,et al.  Local linear perceptrons for classification , 1996, IEEE Trans. Neural Networks.

[17]  Hans G. C. Tråvén,et al.  A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions , 1991, IEEE Trans. Neural Networks.

[18]  Ethem Alpaydin,et al.  GAL: Networks That Grow When They Learn and Shrink When They Forget , 1994, Int. J. Pattern Recognit. Artif. Intell..

[19]  Sargur N. Srihari,et al.  High-performance reading machines , 1992 .

[20]  Robert S. Ledley,et al.  Special issue on Optical Character Recognition , 1970, Pattern Recognit..

[21]  Rama Chellappa,et al.  Evaluation of pattern classifiers for fingerprint and OCR applications , 1994, Pattern Recognit..

[22]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[23]  Lawrence D. Jackel,et al.  Reading handwritten digits: a ZIP code recognition system , 1992, Computer.

[24]  Ethem Alpaydin,et al.  Distributed and local neural classifiers for phoneme recognition , 1994, Pattern Recognit. Lett..

[25]  Ching Y. Suen,et al.  Computer recognition of unconstrained handwritten numerals , 1992, Proc. IEEE.

[26]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[27]  Roy L. Streit,et al.  Maximum likelihood training of probabilistic neural networks , 1994, IEEE Trans. Neural Networks.

[28]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[29]  Gale Martin,et al.  Recognizing Overlapping Hand-Printed Characters by Centered-Object Integrated Segmentation and Recognition , 1991, NIPS.

[30]  Yuchun Lee,et al.  Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks , 1991, Neural Computation.

[31]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[32]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[33]  Stephen M. Omohundro,et al.  Efficient Algorithms with Neural Network Behavior , 1987, Complex Syst..

[34]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .