Direct electro-synthesis of MnO2 nanoparticles over nickel foam from spent alkaline battery cathode and its supercapacitor performance

[1]  Ying Huang,et al.  Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes , 2019, Electrochimica Acta.

[2]  R. Atchudan,et al.  Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction , 2019, International Journal of Hydrogen Energy.

[3]  Yiju Li,et al.  Polyaniline-modified porous carbon tube bundles composite for high-performance asymmetric supercapacitors , 2018, Electrochimica Acta.

[4]  Xiaohua Chen,et al.  Free-standing MnO2/nitrogen-doped graphene paper hybrids as binder-free electrode for supercapacitor applications , 2018, Materials letters (General ed.).

[5]  Shuyi Qin,et al.  Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes , 2018, Chemical Engineering Journal.

[6]  H. Im,et al.  Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode , 2018, Ceramics International.

[7]  Y. R. Lee,et al.  Binder-free electro-synthesis of highly ordered nickel oxide nanoparticles and its electrochemical performance , 2018, Electrochimica Acta.

[8]  Jian Li,et al.  A high-performance, all-textile and spirally wound asymmetric supercapacitors based on core–sheath structured MnO2 nanoribbons and cotton-derived carbon cloth , 2018, Electrochimica Acta.

[9]  Yongsong Luo,et al.  Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors , 2018, Electrochimica Acta.

[10]  Ediga Umeshbabu,et al.  Tuning the Surface Morphology and Pseudocapacitance of MnO2 by a Facile Green Method Employing Organic Reducing Sugars , 2018, ACS Applied Energy Materials.

[11]  Ying Huang,et al.  Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors , 2018 .

[12]  Soojin Park,et al.  MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications , 2018 .

[13]  Junqing Hu,et al.  Hierarchical hollow MnO2 nanofibers with enhanced supercapacitor performance. , 2018, Journal of colloid and interface science.

[14]  Krishna D.P. Nigam,et al.  Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: Challenges & opportunities – A review , 2018 .

[15]  P. Sáha,et al.  A Highly Flexible Supercapacitor Based on MnO2/RGO Nanosheets and Bacterial Cellulose-Filled Gel Electrolyte , 2017, Materials.

[16]  Jun Yu Li,et al.  Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor , 2017, Materials.

[17]  S. Bianco,et al.  Highly Uniform Anodically Deposited Film of MnO2 Nanoflakes on Carbon Fibers for Flexible and Wearable Fiber-Shaped Supercapacitors. , 2017, ACS applied materials & interfaces.

[18]  C. Lokhande,et al.  Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitor application. , 2017, Journal of colloid and interface science.

[19]  Hui Wang,et al.  Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor , 2017 .

[20]  M. Montemor,et al.  Electrodeposition: a versatile, efficient, binder-free and room temperature one-step process to produce MnO2 electrochemical capacitor electrodes , 2017 .

[21]  G. Chen,et al.  Supercapacitor and supercapattery as emerging electrochemical energy stores , 2017 .

[22]  K. Yoon,et al.  Synthesis and characterization of MnO2-decorated graphene for supercapacitors , 2017 .

[23]  C. Lokhande,et al.  An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO2 and Fe2O3 thin films , 2016, Scientific Reports.

[24]  R. Chandra,et al.  An efficient α-MnO2 nanorods forests electrode for electrochemical capacitors with neutral aqueous electrolytes , 2016 .

[25]  F. Kang,et al.  In-situ growth of MnO2 crystals under nanopore-constraint in carbon nanofibers and their electrochemical performance , 2016, Scientific Reports.

[26]  M. G. Sethuraman,et al.  Supercapacitor performance of carbon supported Co3O4 nanoparticles synthesized using Terminalia chebula fruit , 2016 .

[27]  J. Yu,et al.  A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage , 2016, Nano Research.

[28]  Lin Yu,et al.  Crystallization design of MnO2via acid towards better oxygen reduction activity , 2016 .

[29]  Yu-Hsuan Liu,et al.  Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization , 2016 .

[30]  W. Kassem,et al.  Crystalline phase control and growth selectivity of β-MnO2 thin films by remote plasma assisted pulsed laser deposition , 2016 .

[31]  Jian Li,et al.  Core–shell composite of wood-derived biochar supported MnO2 nanosheets for supercapacitor applications , 2016 .

[32]  Haihui Zhou,et al.  Synthesis of curly graphene nanoribbon/polyaniline/MnO2 composite and its application in supercapacitor , 2016 .

[33]  Jianjun Song,et al.  Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core-Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes. , 2016, ACS applied materials & interfaces.

[34]  Tie-hu Li,et al.  Two-step approach of fabrication of three-dimensional MnO 2 -graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode , 2016 .

[35]  Chi-Chang Hu,et al.  Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc–air batteries: Effects of the crystalline structure of manganese oxides , 2015 .

[36]  Fei Li,et al.  MnO2-based nanostructures for high-performance supercapacitors , 2015 .

[37]  D. Ivey,et al.  Nucleation and growth of electrodeposited Mn oxide rods for supercapacitor electrodes , 2015, Nanotechnology.

[38]  Lin Yu,et al.  High-performance α-MnO2 nanowire electrode for supercapacitors , 2015 .

[39]  Qingyu Li,et al.  Direct growth of flower-like 3D MnO2 ultrathin nanosheets on carbon paper as efficient cathode catalyst for rechargeable Li–O2 batteries , 2015 .

[40]  Bin Wang,et al.  Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO2 nanosheets for high-performance supercapacitors , 2015 .

[41]  D. Ivey,et al.  Electrodeposition of Nanoscale Manganese Oxide onto Nickel Foam for Energy Storage Applications , 2015 .

[42]  X. Guo,et al.  Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors , 2014 .

[43]  Xiao-feng Wu,et al.  Sol-gel process for the synthesis of ultrafine MnO2 nanowires and nanorods , 2014 .

[44]  H. Alshareef,et al.  Morphological and Electrochemical Cycling Effects in MnO2 Nanostructures by 3D Electron Tomography , 2014 .

[45]  Hong Guo,et al.  Designed hierarchical MnO2 microspheres assembled from nanofilms for removal of heavy metal ions , 2014 .

[46]  Yalin Lu,et al.  Capacitance of carbon-based electrical double-layer capacitors , 2014, Nature Communications.

[47]  F. Kang,et al.  A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes , 2013 .

[48]  V. Pavlínek,et al.  Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance , 2013 .

[49]  C. Sequeira,et al.  Electrodeposition of Zn–Mn alloys from recycling Zn–MnO2 batteries solutions , 2012 .

[50]  P. Ballirano,et al.  Characterization of spent zinc–carbon and alkaline batteries by SEM-EDS, TGA/DTA and XRPD analysis , 2011 .

[51]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[52]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .

[53]  Ata Akcil,et al.  A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries , 2009 .

[54]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[55]  Weifeng Wei,et al.  Phase-Controlled Synthesis of MnO2 Nanocrystals by Anodic Electrodeposition : Implications for High-Rate Capability Electrochemical Supercapacitors , 2008 .

[56]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[57]  Francesco Vegliò,et al.  Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries , 2007 .

[58]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[59]  J. Tenório,et al.  Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing , 2004 .

[60]  Jorge Alberto Soares Tenório,et al.  Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching , 2001 .

[61]  Huiyu Chen,et al.  MnO2 hierarchical microspheres assembled from porous nanoplates for high-performance supercapacitors , 2019, Ceramics International.

[62]  D. Dubal,et al.  Nickel cobaltite as an emerging material for supercapacitors: An overview , 2015 .

[63]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[64]  Hongda Du,et al.  Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations , 2009 .