Creep of polycrystalline yttrium aluminum garnet (YAG) at elevated temperature in air and in steam

[1]  R. Hay,et al.  Creep and microstructure of Nextel™ 720 fiber at elevated temperature in air and in steam , 2013 .

[2]  J. Chevalier,et al.  Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS , 2013 .

[3]  R. Hay,et al.  Creep of Nextel™ 610 Fiber at 1100°C in Air and in Steam , 2013 .

[4]  Shenglin Jiang,et al.  Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG , 2013 .

[5]  C. Armani Creep Performance of Oxide Ceramic Fiber Materials at Elevated Temperature in Air and in Steam , 2012 .

[6]  Adam J. Stevenson,et al.  Effect of SiO2 on Densification and Microstructure Development in Nd:YAG Transparent Ceramics , 2011 .

[7]  R. Abart,et al.  Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1,723 K: a miniaturized study , 2011 .

[8]  F. Flucht,et al.  Creep investigations of alumina-based all-oxide ceramic matrix composites , 2010 .

[9]  M. Ruggles‐Wrenn,et al.  Effects of steam environment on creep behavior of Nextel™720/alumina-mullite ceramic composite at elevated temperature , 2010 .

[10]  M. Ruggles‐Wrenn,et al.  Creep behavior of Nextel™720/alumina–mullite ceramic composite with ±45° fiber orientation at 1200 °C ☆ , 2010 .

[11]  Janet B. Davis,et al.  Effects of Steam Environment on Creep Behavior of Nextel™610/Monazite/Alumina Composite at 1,100°C , 2009 .

[12]  J. Baumard,et al.  The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms , 2009 .

[13]  M. Ruggles‐Wrenn,et al.  Creep of Nextel™720/alumina–mullite ceramic composite at 1200 °C in air, argon, and steam , 2009 .

[14]  M. Ruggles‐Wrenn,et al.  Effects of steam environment on creep behavior of Nextel™720/alumina ceramic composite at elevated temperature , 2008 .

[15]  M. Ruggles‐Wrenn,et al.  Effects of steam environment on compressive creep behavior of Nextel™720/Alumina ceramic composite at 1200 °C , 2008 .

[16]  M. Ruggles‐Wrenn,et al.  Effects of environment on creep behavior of two oxide/oxide ceramic–matrix composites at 1200 °C , 2008 .

[17]  M. Ruggles‐Wrenn,et al.  Creep behavior in interlaminar shear of Nextel™720/alumina ceramic composite at elevated temperature in air and in steam , 2008 .

[18]  M. Ruggles‐Wrenn,et al.  Creep behavior of Nextel™720/alumina ceramic composite with ±45° fiber orientation at 1200 °C , 2008 .

[19]  G. Morscher,et al.  Creep‐Resistance of Developmental Polycrystalline Yttrium‐Aluminum Garnet Fibers , 2008 .

[20]  T. Parthasarathy,et al.  High‐Temperature Deformation Behavior of Polycrystalline Yttrium Aluminum Garnet (YAG) , 2008 .

[21]  H. Klemm,et al.  Corrosion of ceramic materials in hot gas environment , 2008 .

[22]  T. Parthasarathy,et al.  Processing and Mechanical Properties of Polycrystalline Y3Al5O12 (Yttrium Aluminum Garnet) , 2008 .

[23]  Adam J. Stevenson,et al.  Sintering and grain growth in SiO2 doped Nd:YAG , 2008 .

[24]  M. Ruggles‐Wrenn,et al.  Influence of hold times on the elevated-temperature fatigue behavior of an oxide–oxide ceramic composite in air and in steam environment , 2007 .

[25]  F. Zok Developments in Oxide Fiber Composites , 2006 .

[26]  Yan Lin Aung,et al.  PROGRESS IN CERAMIC LASERS , 2006 .

[27]  David J. Green,et al.  Comparison of the Mechanical Properties of Single Crystal and Polycrystalline Yttrium Aluminum Garnet , 2006 .

[28]  M. Herrmann,et al.  Corrosion of selected ceramic materials in hot gas environment , 2006 .

[29]  R. Pullar,et al.  Effect of sodium on the creep resistance of yttrium aluminium garnet (YAG) fibres , 2006 .

[30]  J. Yang,et al.  Effects of Combustor Rig Exposure on a Porous‐Matrix Oxide Composite , 2005 .

[31]  János Urai,et al.  Effect of water on the strength and microstructure of Carrara marble axially compressed at high temperature , 2005 .

[32]  Y. Harada,et al.  Environmental effects on ultra-high temperature creep behavior of directionally solidified oxide eutectic ceramics , 2005 .

[33]  Triplicane A. Parthasarathy,et al.  Interface Design for Oxidation‐Resistant Ceramic Composites , 2004 .

[34]  H. Haneda,et al.  Ytterbium Cation Diffusion in Yttrium Aluminum Garnet (YAG)—Implications for Creep Mechanisms , 2004 .

[35]  J. Yang,et al.  Effects of Thermal Aging on the Mechanical Properties of a Porous‐Matrix Ceramic Composite , 2004 .

[36]  Y. Harada,et al.  Influence of Moisture on Ultra‐High‐Temperature Tensile Creep Behavior of in Situ Single‐Crystal Oxide Ceramic Alumina/Yttrium Aluminum Garnet Eutectic Composite , 2003 .

[37]  R. Hay,et al.  Characterization and High‐Temperature Mechanical Behavior of an Oxide/Oxide Composite , 2003 .

[38]  T. Parthasarathy,et al.  Effectiveness of Monazite Coatings in Oxide/Oxide Composites after Long‐Term Exposure at High Temperature , 2003 .

[39]  H. Haneda A study of defect structures in oxide materials by secondary ion mass spectrometry , 2003 .

[40]  D. Wilson,et al.  High performance oxide fibers for metal and ceramic composites , 2001 .

[41]  H. Schneider,et al.  Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties , 2000 .

[42]  J. Castaing,et al.  Hydrogen defects in α-Al2O3 and water weakening of sapphire and alumina ceramics between 600°C and 1000°C—II. Mechanical properties , 2000 .

[43]  M. Kuklja Defects in yttrium aluminium perovskite and garnet crystals: atomistic study , 2000 .

[44]  R. Pullar,et al.  The sintering behaviour, mechanical properties and creep resistance of aligned polycrystalline yttrium aluminium garnet (YAG) fibres, produced from an aqueous sol-gel precursor , 1999 .

[45]  R. Pullar,et al.  The manufacture of yttrium aluminium garnet (YAG) fibres by blow spinning from a sol-gel precursor , 1998 .

[46]  J. Wolfenstine Elevated temperature deformation of single crystal Y3Al5O12 , 1998 .

[47]  D. M. Wilson,et al.  Statistical tensile strength of NextelTM 610 and NextelTM 720 fibres , 1997 .

[48]  W. Blumenthal,et al.  High‐Temperature Deformation of Single‐Crystal Yttrium‐Aluminum Garnet (YAG) , 1996 .

[49]  J. Halloran,et al.  Synthesis of yttrium aluminum garnet from yttrium and aluminum isobutyrate precursors , 1996 .

[50]  J. Halloran,et al.  Polycrystalline Yttrium Aluminum Garnet Fibers from Colloidal Sols , 1995 .

[51]  Akio Ikesue,et al.  Fabrication of Polycrystal line, Transparent YAG Ceramics by a Solid‐State Reaction Method , 1995 .

[52]  M. Harmer,et al.  Creep of duplex microstructures , 1994 .

[53]  R. Hay Kinetics and Deformation during the Reaction of Yttrium‐Aluminum Perovskite and Alumina to Yttrium‐Aluminum Garnet , 1994 .

[54]  S. Karato,et al.  High-temperature creep of yttrium-aluminium garnet single crystals , 1994, Journal of Materials Science.

[55]  G. Corman Creep of yttrium aluminium garnet single crystals , 1993 .

[56]  T. Parthasarathy,et al.  Creep Mechanism of Polycrystalline Yttrium Aluminum Garnet , 1992 .

[57]  T. Langdon,et al.  Creep of ceramics , 1983 .

[58]  J. Rabier,et al.  Dissociation of dislocation with a/2〈111〉 Burgers vectors in YIG single crystals deformed at high temperature , 1981 .

[59]  P. Feltham,et al.  On the Creep of Crystals , 1971, September 16.

[60]  M. Ashby,et al.  On grain boundary sliding and diffusional creep , 1971 .