Generalized Ideals of BCK/BCI-Algebras Based on Fuzzy Soft Set Theory

<jats:p>In the present paper, using Lukaswize triple-valued logic, we introduce the notion of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mfenced open="(" close=")" separators="|"> <mrow> <mi>α</mi> <mo>,</mo> <mi>β</mi> </mrow> </mfenced> </math> </jats:inline-formula>-intuitionistic fuzzy soft ideal of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mrow> <mtext>BCK</mtext> </mrow> <mo>/</mo> <mrow> <mtext>BCI</mtext> </mrow> </math> </jats:inline-formula>-algebras, where <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi>α</mi> <mtext> and </mtext> <mi>β</mi> </math> </jats:inline-formula> are the membership values between an intuitionistic fuzzy soft point and intuitionistic fuzzy set. Moreover, intuitionistic fuzzy soft ideals with thresholds are introduced, and their related properties are investigated.</jats:p>