Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

Thermodynamics describes how macroscopic systems exchange energy in the form of heat and work, yet many microscopic systems such as molecular motors exhibit behavior that seems to follow the same principles. A new theoretical framework for describing the thermodynamics of microscopic systems that interact strongly with their surroundings is presented.

[1]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[2]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[3]  Christopher Jarzynski,et al.  Nonequilibrium work theorem for a system strongly coupled to a thermal environment , 2004 .

[4]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[6]  J. Wyman,et al.  THE BINDING POTENTIAL, A NEGLECTED LINKAGE CONCEPT. , 1965, Journal of molecular biology.

[7]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[8]  Jeremy L. England,et al.  Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. , 2011, Annual review of physical chemistry.

[9]  U. Seifert First and Second Law of Thermodynamics at Strong Coupling. , 2015, Physical review letters.

[10]  Peter Hänggi,et al.  Fluctuation theorem for arbitrary open quantum systems. , 2009, Physical review letters.

[11]  J. Schellman,et al.  Fifty years of solvent denaturation. , 2002, Biophysical chemistry.

[12]  S. N. Timasheff,et al.  Protein hydration, thermodynamic binding, and preferential hydration. , 2002, Biochemistry.

[13]  E. Lutz,et al.  Nonequilibrium entropy production for open quantum systems. , 2011, Physical review letters.

[14]  T. Brandes,et al.  Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping , 2016, 1602.01340.

[15]  T. L. Hill A Different Approach to Nanothermodynamics , 2001 .

[16]  M. Murthy Protein Hydration , 2021, Current Science.

[17]  G. Hummer,et al.  Free energy reconstruction from nonequilibrium single-molecule pulling experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  P. Hänggi,et al.  Open system trajectories specify fluctuating work but not heat. , 2016, Physical review. E.

[20]  Peter Hänggi,et al.  Specific heat anomalies of open quantum systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  J. Wyman,et al.  Binding and Linkage: Functional Chemistry of Biological Macromolecules , 1990 .

[22]  J. Eisert,et al.  Thermal machines beyond the weak coupling regime , 2013, 1310.8349.

[23]  D. Bedeaux,et al.  Thermodynamics for single-molecule stretching experiments. , 2006, The journal of physical chemistry. B.

[24]  R. A. Sack,et al.  Pressure-dependent partition functions , 1959 .

[25]  U. Seifert Stochastic thermodynamics of single enzymes and molecular motors , 2010, The European physical journal. E, Soft matter.

[26]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[27]  U. Weiss,et al.  Functional integral approach to time-dependent heat exchange in open quantum systems: general method and applications , 2014, 1412.6991.

[28]  J. Schellman Solvent denaturation , 1978 .

[29]  A. Münster,et al.  Zur Theorie der generalisierten Gesamtheiten , 1959 .

[30]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[31]  Max Planck,et al.  Treatise on thermodynamics , 1928, The Mathematical Gazette.

[32]  S. N. Timasheff,et al.  Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Thoss,et al.  Thermodynamics of a subensemble of a canonical ensemble. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  T. L. Hill,et al.  Thermodynamics of Small Systems , 2002 .

[35]  Stefanie Hilt,et al.  System-bath entanglement in quantum thermodynamics , 2009 .

[36]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[37]  Massimiliano Esposito,et al.  Nature of heat in strongly coupled open quantum systems , 2014, 1408.3608.

[38]  J. Anders,et al.  Thermal energies of classical and quantum damped oscillators coupled to reservoirs , 2015, 1512.02551.

[39]  Udo Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[40]  Thomas Engel,et al.  Thermodynamics, Statistical Thermodynamics, & Kinetics , 2005 .

[41]  P. Hānggi,et al.  QUANTUM BROWNIAN MOTION AND THE THIRD LAW OF THERMODYNAMICS , 2006, quant-ph/0601056.

[42]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[43]  Hui-yi Tang,et al.  Thermodynamic Anomalies of Small Quantum Systems Within a New Approach to Statistical Physics , 2014 .

[44]  G. Mahler,et al.  Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[46]  J. Pekola,et al.  Heat due to system-reservoir correlations in thermal equilibrium , 2014, 1404.4719.

[47]  Nieuwenhuizen,et al.  Extraction of work from a single thermal bath in the quantum regime , 2000, Physical review letters.

[48]  J. Paz,et al.  Measuring work and heat in ultracold quantum gases , 2014, 1412.6116.

[49]  J. Lebowitz,et al.  On the equilibrium state of a small system with random matrix coupling to its environment , 2015, 1502.05004.

[50]  E. Lutz,et al.  Landauer's principle in the quantum regime. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  T. Nieuwenhuizen,et al.  Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[53]  H. Büttner,et al.  N ov 2 00 7 Information and entropy in quantum Brownian motion : Thermodynamic entropy versus von Neumann entropy , 2008 .

[54]  C. Jarzynski Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.

[55]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[56]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[57]  W. Byers Brown,et al.  Constant pressure ensembles in statistical mechanics , 1958 .

[58]  R. D’Amico,et al.  Entropy Production in Quantum Brownian Motion , 2013 .

[59]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[60]  J. W. Humberston Classical mechanics , 1980, Nature.

[61]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[62]  Nonequilibrium statistical mechanics of the heat bath for two Brownian particles. , 2013, Physical review letters.

[63]  Gert-Ludwig Ingold,et al.  Finite quantum dissipation: the challenge of obtaining specific heat , 2008, 0805.3974.

[64]  F. Ritort,et al.  The nonequilibrium thermodynamics of small systems , 2005 .

[65]  M. Esposito,et al.  Quantum thermodynamics: a nonequilibrium Green's function approach. , 2014, Physical review letters.

[66]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[67]  Massimiliano Esposito,et al.  Entropy production as correlation between system and reservoir , 2009, 0908.1125.

[68]  E. A. Guggenheim Grand Partition Functions and So‐Called ``Thermodynamic Probability'' , 1939 .

[69]  Michele Campisi,et al.  Thermodynamics and fluctuation theorems for a strongly coupled open quantum system: an exactly solvable case , 2009, 0907.1590.

[70]  P. Hänggi,et al.  The other QFT , 2015, Nature Physics.

[71]  Sebastian Deffner,et al.  Thermodynamic universality of quantum Carnot engines. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.