Movement ecology of exotic nilgai antelope: A threat to the re‐emergence of cattle fever ticks in the southern USA

[1]  T. Campbell,et al.  Latrine ecology of nilgai antelope , 2022, Journal of Mammalogy.

[2]  Allison K. Shaw Causes and consequences of individual variation in animal movement , 2020, Movement ecology.

[3]  B. Mutayoba,et al.  Spatial ecology of male hippopotamus in a changing watershed , 2019, Scientific Reports.

[4]  P. Olafson,et al.  TICK VECTOR AND DISEASE PATHOGEN SURVEILLANCE OF NILGAI ANTELOPE (BOSELAPHUS TRAGOCAMELUS) IN SOUTHEASTERN TEXAS, USA , 2018, Journal of Wildlife Diseases.

[5]  John Fieberg,et al.  Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses , 2018, Ecology and evolution.

[6]  A. A. Pérez de León,et al.  Implication of Nilgai Antelope (Artiodactyla: Bovidae) in Reinfestations of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in South Texas: A Review and Update. , 2018, Journal of medical entomology.

[7]  M. Lewis,et al.  Macroparasite dynamics of migratory host populations. , 2018, Theoretical population biology.

[8]  T. Campbell,et al.  Movement patterns of nilgai antelope in South Texas: Implications for cattle fever tick management. , 2017, Preventive veterinary medicine.

[9]  K. Vercauteren,et al.  Quantifying drivers of wild pig movement across multiple spatial and temporal scales , 2017, Movement ecology.

[10]  T. Campbell,et al.  Comparison of natural and artificial odor lures for nilgai (Boselaphus tragocamelus) and white-tailed deer (Odocoileus virginianus) in South Texas: Developing treatment for cattle fever tick eradication , 2017, International journal for parasitology. Parasites and wildlife.

[11]  M. Odden,et al.  Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration , 2017, PloS one.

[12]  Jonathan R. Potts,et al.  Flexible characterization of animal movement pattern using net squared displacement and a latent state model , 2016, Movement ecology.

[13]  R. Sikes,et al.  2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education , 2016, Journal of Mammalogy.

[14]  Navinder J. Singh,et al.  Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats , 2016, PloS one.

[15]  K. Miller,et al.  Purposeful wanderings: mate search strategies of male white-tailed deer , 2015 .

[16]  M. Schaepman,et al.  Foraging ecology of three sympatric ungulate species – Behavioural and resource maps indicate differences between chamois, ibex and red deer , 2015, Movement ecology.

[17]  M. Boyce,et al.  Habitat selection during ungulate dispersal and exploratory movement at broad and fine scale with implications for conservation management , 2014, Movement ecology.

[18]  P. Olafson,et al.  Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas leads to shared local infestations on cattle and deer , 2014, Parasites & Vectors.

[19]  A. Peterson,et al.  Invasive potential of cattle fever ticks in the southern United States , 2014, Parasites & Vectors.

[20]  W. D. Walter,et al.  Brownian Bridge Movement Models to Characterize Birds' Home Ranges , 2013 .

[21]  Ryan S. Miller,et al.  Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States , 2012, Preventive Veterinary Medicine.

[22]  Atle Mysterud,et al.  A Migratory Northern Ungulate in the Pursuit of Spring: Jumping or Surfing the Green Wave? , 2012, The American Naturalist.

[23]  F. Guerrero,et al.  Integrated Strategy for Sustainable Cattle Fever Tick Eradication in USA is Required to Mitigate the Impact of Global Change , 2012, Front. Physio..

[24]  T. Campbell,et al.  Home Ranges of the Nilgai Antelope (Boselaphus tragocamelus) in Texas , 2012 .

[25]  T. Nelson,et al.  Time geography and wildlife home range delineation , 2012 .

[26]  Atle Mysterud,et al.  Partial migration in expanding red deer populations at northern latitudes – a role for density dependence? , 2011 .

[27]  Floris M. van Beest,et al.  What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? , 2011, The Journal of animal ecology.

[28]  F. Bryant,et al.  Nilgai Antelope in Northern Mexico as a Possible Carrier for Cattle Fever Ticks and Babesia bovis and Babesia bigemina , 2011, Journal of wildlife diseases.

[29]  N. Bunnefeld,et al.  A model-driven approach to quantify migration patterns: individual, regional and yearly differences. , 2011, The Journal of animal ecology.

[30]  I. Herfindal,et al.  Screening Global Positioning System Location Data for Errors Using Animal Movement Characteristics , 2010 .

[31]  Stephen Demarais,et al.  Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars , 2010 .

[32]  K. Miller,et al.  Home range and habitat selection of an insular fallow deer (Dama dama L.) population on Little St. Simons Island, Georgia, USA , 2009, European Journal of Wildlife Research.

[33]  T. Roper,et al.  Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles , 2008 .

[34]  David M. Leslie Boselaphus Tragocamelus (Artiodactyla: Bovidae) , 2008 .

[35]  Stephen M. Krone,et al.  Analyzing animal movements using Brownian bridges. , 2007, Ecology.

[36]  Stephen L. Webb,et al.  Scale of Management for Mature Male White-Tailed Deer as Influenced by Home Range and Movements , 2007 .

[37]  Lee A. Vierling,et al.  Effects of habitat on GPS collar performance: using data screening to reduce location error , 2007 .

[38]  R. S. Verneque,et al.  Association of BoLA-DRB3.2 alleles with tick (Boophilus microplus) resistance in cattle. , 2006, Genetics and molecular research : GMR.

[39]  S. Aulagnier,et al.  Dispersal is not female biased in a resource-defence mating ungulate, the European roe deer , 2006, Proceedings of the Royal Society B: Biological Sciences.

[40]  J. George,et al.  Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States , 2002, Journal of medical entomology.

[41]  E. Dinerstein An ecological survey of the Royal Karnali-Bardia Wildlife Reserve, Nepal. Part II: Habitat/animal interactions , 1979 .

[42]  F. Dobson An Experimental Study of Dispersal in the California Ground Squirrel , 1979 .

[43]  W. Sheffield,et al.  Geographic and Ecologic Distribution of Nilgai Antelope in Texas , 1971 .

[44]  T. Kistner,et al.  White-Tailed Deer as Hosts of Cattle Fever-Ticks* , 1970, Journal of wildlife diseases.

[45]  W. H. Burt Territoriality and Home Range Concepts as Applied to Mammals , 1943 .

[46]  OUP accepted manuscript , 2021, Annals of the Entomological Society of America.

[47]  W. C. Hoffmann,et al.  Development of a remotely activated field sprayer and evaluation of temperature and aeration on the longevity of Steinernema riobrave entomopathogenic nematodes for treatment of cattle fever tick-infested nilgai , 2020 .

[48]  Tyler,et al.  Comparative daily activity patterns of Nilgai , Boselaphus tragocamelus and white-tailed deer , Odocoileus virginianus in South Texas , 2017 .

[49]  Flores,et al.  Rationale for Classical Biological Control of Cattle Fever Ticks and Proposed Methods for Field Collection of Natural Enemies , 2016 .

[50]  John S. Lewis,et al.  Assessing the Helicopter and Net Gun as a Capture Technique for White-Tailed Deer , 2008 .

[51]  Daniel A. Sumner,et al.  Public Policy, Invasive Species and Animal Disease Management , 2005 .

[52]  R. Langley Dilution of Precision , 1999 .