Simulation Error Minimization–Based Identification of Polynomial Input–Output Recursive Models

Abstract Polynomial input–output recursive models are widely used in nonlinear model identification for their flexibility and representation capabilities. Several identification algorithms are available in the literature dealing both with model selection and parameter estimation, based on various criteria. Previous works have shown the limits of the classical prediction error minimization approach, and suggested the use of a simulation error minimization approach for better model selection. The present paper goes a step further by integrating the model selection procedure with a simulation oriented parameter estimation algorithm. Notwithstanding the algorithmic and computational complexity of the proposed method, it is shown that it can achieve significant performance improvements with respect to previously proposed approaches.

[1]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[2]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[3]  Marcello Farina,et al.  Some convergence properties of multi-step prediction error identification criteria , 2008, 2008 47th IEEE Conference on Decision and Control.

[4]  L. A. Aguirre,et al.  Dynamical effects of overparametrization in nonlinear models , 1995 .

[5]  Er-Wei Bai,et al.  A TWO-STAGE ALGORITHM FOR IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS , 2006 .

[6]  Johan A. K. Suykens,et al.  Wiener-Hammerstein Benchmark , 2009 .

[7]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[8]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[9]  L. A. Aguirre,et al.  EFFECTS OF THE SAMPLING TIME ON THE DYNAMICS AND IDENTIFICATION OF NONLINEAR MODELS , 1995 .

[10]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[11]  George W. Irwin,et al.  A fast nonlinear model identification method , 2005, IEEE Transactions on Automatic Control.

[12]  Marcello Farina,et al.  Polynomial NARX Model Identification: a Wiener–Hammerstein Benchmark , 2009 .

[13]  I. J. Leontaritis,et al.  Model selection and validation methods for non-linear systems , 1987 .

[14]  Luigi Piroddi,et al.  Simulation error minimisation methods for NARX model identification , 2008, Int. J. Model. Identif. Control..

[15]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .