Low Power Reconfigurability and Reduced Crosstalk in Integrated Photonic Circuits Fabricated by Femtosecond Laser Micromachining

Femtosecond laser writing is a powerful technique that allows rapid and cost‐effective fabrication of photonic integrated circuits with unique 3D geometries. In particular, the possibility to reconfigure such devices by thermo‐optic phase shifters represents a paramount feature, exploited to produce adaptive and programmable circuits. However, the scalability is strongly limited by the flaws of current thermal phase shifters, which require hundreds of milliwatts to operate and exhibit large thermal crosstalk. In this work, thermally‐insulating 3D microstructures are exploited to decrease the power needed to induce a 2π phase shift down to 37 mW and to reduce the crosstalk to a few percent. Further improvement is demonstrated when operating in vacuum, with sub‐milliwatt power dissipation and negligible crosstalk. These results pave the way toward the demonstration of complex programmable integrated photonic circuits fabricated by femtosecond laser writing, thus opening exciting perspectives in integrated quantum photonics.

[1]  Val Zwiller,et al.  Hybrid integrated quantum photonic circuits , 2020, Nature Photonics.

[2]  Jian-Wei Pan,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[3]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[4]  Simone Atzeni,et al.  Thermal Phase Shifters for Femtosecond Laser Written Photonic Integrated Circuits , 2019, Journal of Lightwave Technology.

[5]  Y. Bellouard,et al.  Optomechanical suspended waveguide for broadband phase modulation with frequency memory effect , 2019, 1906.02035.

[6]  I. Sagnes,et al.  Interfacing scalable photonic platforms: solid-state based multi-photon interference in a reconfigurable glass chip , 2019, Optica.

[7]  Fabio Sciarrino,et al.  Experimental multiphase estimation on a chip , 2019, Optica.

[8]  Graham D. Marshall,et al.  Large-scale silicon quantum photonics implementing arbitrary two-qubit processing , 2018, Nature Photonics.

[9]  I. Walmsley,et al.  8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides. , 2018, Optics express.

[10]  Stanislav Straupe,et al.  Reconfigurable Photonics on a Glass Chip , 2018, Physical Review Applied.

[11]  R. Osellame,et al.  Laser-written integrated platform for quantum storage of heralded single photons , 2018, Optica.

[12]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[13]  A. Crespi,et al.  Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing. , 2018, Optics express.

[14]  Zachary J. Chaboyer,et al.  Design and fabrication of reconfigurable laser-written waveguide circuits , 2017 .

[15]  S. Matsuo,et al.  Water-assisted laser drilling for miniature internal thread in glass and evaluation of its strength , 2017 .

[16]  Simone Atzeni,et al.  Integrated sources of entangled photons at telecom wavelength in femtosecond-laser-written circuits , 2017, 1710.09618.

[17]  A. Crespi,et al.  Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup , 2017, Journal of the Optical Society of America B.

[18]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[19]  Fabio Sciarrino,et al.  Single-Photon Quantum Contextuality on a Chip , 2017, ACS photonics.

[20]  Tommaso Lunghi,et al.  Quantum photonics at telecom wavelengths based on lithium niobate waveguides , 2016, 1608.01100.

[21]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[22]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[23]  Fabio Sciarrino,et al.  Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining , 2015, Light: Science & Applications.

[24]  Gregory R. Steinbrecher,et al.  High-fidelity quantum state evolution in imperfect photonic integrated circuits , 2015 .

[25]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[26]  Simon Gross,et al.  Laser written circuits for quantum photonics , 2015 .

[27]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[28]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[29]  Jeroen De Coster,et al.  Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform , 2015, Photonics West - Optoelectronic Materials and Devices.

[30]  Marco Barbieri,et al.  Quantum teleportation on a photonic chip , 2014, Nature Photonics.

[31]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[32]  Yan Li,et al.  Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips , 2013 .

[33]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[34]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[35]  S. Olaizola,et al.  Low bend loss waveguides enable compact, efficient 3D photonic chips. , 2013, Optics express.

[36]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[37]  Yurii A. Vlasov,et al.  Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G , 2012, IEEE Communications Magazine.

[38]  Hong Cai,et al.  Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms , 2011, IEEE Photonics Technology Letters.

[39]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[40]  P. Sun,et al.  Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. , 2010, Optics express.

[41]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[42]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[43]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[44]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[45]  D. Conkey,et al.  Atomic spectroscopy on a chip , 2007 .

[46]  Fumiyo Yoshino,et al.  Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.

[47]  Yufeng Jin,et al.  MEMS vacuum packaging technology and applications , 2003, Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003).

[48]  Per Capita,et al.  About the authors , 1995, Machine Vision and Applications.

[49]  K. Bergman,et al.  High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip , 2010, IEEE Journal of Selected Topics in Quantum Electronics.