On the rate of convergence to the semi-circular law

Let \(X\;=\;(X_{jk})^n_{j,k=1}\) denote a Hermitian random matrix with entries X jk, which are independent for \(1\;\leq\;j\;\leq\;k\;\leq\;n\). We consider the rate of convergence of the empirical spectral distribution function of the matrix X to the semi-circular law assuming that \(\mathbf{E}X_{jk}\;=\;0,\;\mathbf{E}X^2_{jk}\;=\;1\) and that the distributions of the matrix elements X jk have a uniform sub exponential decay in the sense that there exists a constant ϰ> 0 such that for any \(1\;\leq\;j\;\leq\;k\;\leq\;n\) and any \(t\;\geq\;1\) we have $$\mathrm{Pr}\left\{|X_{jk}|\;>\;t \right\}\leq\;x^{-1}\;\exp\left\{-t^x\right\}$$ By means of a short recursion argument it is shown that the Kolmogorov distance between the empirical spectral distribution of the Wigner matrix \(\mathbf{W}\;=\;\frac{1}{\sqrt{n}}\mathbf{X}\) and the semicircular law is of order \(O(n^{-1}\;\log^b\;n)\) with some positive constant \(b\;>\;0\)

[1]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .

[2]  V. L. GIRKO Extended proof of the Statement: Convergence rate of the expected spectral functions of symmetric random matrices Ξ n is equal to O (n—1/2) and the method of critical steepest descent , 2002 .

[3]  On the rate of convergence of the expected spectral distribution function of a Wigner matrix to the semi-circular law , 2009 .

[4]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[5]  M. Ledoux On Talagrand's deviation inequalities for product measures , 1997 .

[6]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[7]  S. Bobkov,et al.  On Concentration of Empirical Measures and Convergence to the Semi-circle Law , 2010 .

[8]  Friedrich Götze,et al.  Rate of convergence to the semi-circular law , 2003 .

[9]  О точности приближения спектра GOE полукруговым законом@@@Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble , 2007 .

[10]  V. Bentkus On measure concentration for separately Lipschitz functions in product spaces , 2007 .

[11]  Jonas Gustavsson Gaussian fluctuations of eigenvalues in the GUE , 2004 .

[12]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[13]  Friedrich Götze,et al.  The rate of convergence for spectra of GUE and LUE matrix ensembles , 2005 .

[14]  F. Gotze,et al.  THE RATE OF CONVERGENCE OF SPECTRA OF SAMPLE COVARIANCE MATRICES , 2007, 0712.3725.

[15]  The rate of convergence of spectra of sample covariance matrices@@@The Rate of Convergence of Spectra of Sample Covariance Matrices , 2009 .