Multi-objective model type selection

[1]  A. E. Eiben,et al.  Multiobjective Evolutionary Algorithms , 2015 .

[2]  Zhongyi Hu,et al.  A PSO and pattern search based memetic algorithm for SVMs parameters optimization , 2013, Neurocomputing.

[3]  Roman Neruda,et al.  Multiobjectivization for classifier parameter tuning , 2013, GECCO '13 Companion.

[4]  Quan Sun,et al.  Full model selection in the space of data mining operators , 2012, GECCO '12.

[5]  Pedro Antonio Gutiérrez,et al.  Weighting Efficient Accuracy and Minimum Sensitivity for Evolving Multi-Class Classifiers , 2011, Neural Processing Letters.

[6]  Weiguo Gong,et al.  Multi-objective uniform design as a SVM model selection tool for face recognition , 2011, Expert Syst. Appl..

[7]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[8]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[9]  Mehmet Karaköse,et al.  A multi-objective artificial immune algorithm for parameter optimization in support vector machine , 2011, Appl. Soft Comput..

[10]  Gavin C. Cawley,et al.  On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..

[11]  Yves Lecourtier,et al.  A multi-model selection framework for unknown and/or evolutive misclassification cost problems , 2010, Pattern Recognit..

[12]  Dirk Gorissen,et al.  Multiobjective global surrogate modeling, dealing with the 5-percent problem , 2010, Engineering with Computers.

[13]  Filip De Turck,et al.  Evolutionary Model Type Selection for Global Surrogate Modeling , 2009, J. Mach. Learn. Res..

[14]  Hugo Jair Escalante,et al.  Particle Swarm Model Selection , 2009, J. Mach. Learn. Res..

[15]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[16]  Huanhuan Chen,et al.  Probabilistic Classification Vector Machines , 2009, IEEE Transactions on Neural Networks.

[17]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[18]  Isabelle Guyon ClopiNet A practical guide to model selection , 2009 .

[19]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[20]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Evolutionary tuning of SVM parameter values in multiclass problems , 2008, Neurocomputing.

[21]  Bernhard Sendhoff,et al.  Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[22]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[23]  Isabelle Guyon,et al.  Agnostic Learning vs. Prior Knowledge Challenge , 2007, 2007 International Joint Conference on Neural Networks.

[24]  Gavin C. Cawley,et al.  Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters , 2007, J. Mach. Learn. Res..

[25]  Gary B. Lamont,et al.  Evolutionary algorithms for solving multi-objective problems, Second Edition , 2007, Genetic and evolutionary computation series.

[26]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[27]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[28]  Christian Igel,et al.  Multi-Objective Optimization of Support Vector Machines , 2006, Multi-Objective Machine Learning.

[29]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[30]  Ching Y. Suen,et al.  Automatic model selection for the optimization of SVM kernels , 2005, Pattern Recognit..

[31]  Christian Igel,et al.  Evolutionary tuning of multiple SVM parameters , 2005, ESANN.

[32]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[33]  Gunnar Rätsch,et al.  Soft Margins for AdaBoost , 2001, Machine Learning.

[34]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[35]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[36]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[37]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[38]  Yoshua Bengio,et al.  Continuous optimization of hyper-parameters , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[39]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[40]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[41]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[42]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[43]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[44]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[45]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[46]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[47]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[48]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[49]  Yann LeCun,et al.  Measuring the VC-Dimension of a Learning Machine , 1994, Neural Computation.

[50]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[51]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[52]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[53]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[54]  David G. Stork,et al.  Pattern Classification , 1973 .