Logic and Quantum Physics

Current research in Logic is no longer confined to the traditional study of logical consequence or valid inference. As can be witnessed by the range of topics covered in this special issue, the subject matter of logic encompasses several kinds of informational processes ranging from proofs and inferences to dialogues, observations, measurements, communication and computation. What interests us here is its application to quantum physics: how does logic handle informational processes such as observations and measurements of quantum systems? What are the basic logical principles fit to handle and reason about quantum physical processes? These are the central questions in this paper. It is my aim to provide the reader with some food for thought and to give some pointers to the literature that provide an easy access to this field of research. In the next section I give a brief historical sketch of the origin of the quantum logic project. Next I will explain the theory of orthomodular lattices in section 2. Section 3 covers the syntax and semantics of traditional quantum logic. In section 4, I focus on the limits of quantum logic, dealing in particular with the implication problem. This paves the way to section 5 on modal quantum logic. I end with section 6 on dynamic quantum logic, giving the reader a taste of one of the latest new developments in the field.

[1]  Dirk Aerts Description of Compound Physical Systems and Logical Interaction of Physical Systems , 1981 .

[2]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[3]  Ian D. Clark An Axiomatisation of Quantum Logic , 1973, J. Symb. Log..

[4]  David Moore,et al.  Current Research in Operational Quantum Logic , 2000 .

[5]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .

[6]  Adi Shamir,et al.  On Digital Signatures and Public-Key Cryptosystems. , 1977 .

[7]  Angus Macintyre,et al.  Trends in Logic , 2001 .

[8]  Dov M. Gabbay,et al.  Handbook of Quantum Logic and Quantum Structures: Quantum Structures , 2007 .

[9]  C. Piron,et al.  On the Foundations of Quantum Physics , 1976 .

[10]  Stan Gudder,et al.  Quantum Computational Logic , 2003 .

[11]  Sonja Smets On Causation and a Counterfactual in Quantum Logic: The Sasaki Hook , 2002 .

[12]  A. Berthiaume Quantum computation , 1998 .

[13]  René Mayet Some Characterizations of the Underlying Division Ring of a Hilbert Lattice by Automorphisms , 1998 .

[14]  M. L. Dalla Chiara Some Metalogical Pathologies of Quantum Logic , 1981 .

[15]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[16]  Gary M. Hardegree Stalnaker conditionals and quantum logic , 1975, J. Philos. Log..

[17]  Herman H. Goldstine The Computer from Pascal to von Neumann , 1972 .

[18]  Robert Piziak Orthomodular lattices as implication algebras , 1974, J. Philos. Log..

[19]  H. Dishkant Semantics of the minimal logic of quantum mechanics , 1972 .

[20]  Robert Piziak,et al.  Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..

[21]  Alexandru Baltag,et al.  Quantum logic as a dynamic logic , 2011, Synthese.

[22]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[23]  Alexandru Baltag,et al.  The Logic of Quantum Programs , 2004, ArXiv.

[24]  Richard Phillips Feynman The very best of the Feynman lectures , 2005 .

[25]  Alexandru Baltag,et al.  Complete Axiomatizations for Quantum Actions , 2005 .

[26]  R. Feynman Simulating physics with computers , 1999 .

[27]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  R. Penrose,et al.  Shadows of the Mind , 1994 .

[29]  Tien D Kieu Quantum Principles and Mathematical Computability , 2002 .

[30]  Hirokazu Nishimura Sequential Method in Quantum Logic , 1980, J. Symb. Log..

[31]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[32]  Cliff Hooker,et al.  The Logico-Algebraic Approach to Quantum Mechanics , 1975 .

[33]  M. L. Dalla Chiara,et al.  Quantum Computational Logics. A Survey , 2003 .

[34]  Hirokazu Nishimura Proof theory for minimal quantum logic II , 1994 .

[35]  Peter Gibbins Particles and Paradoxes: A user-friendly quantum logic , 1985 .

[36]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[37]  Alexandru Baltag,et al.  Correlated Knowledge: an Epistemic-Logic View on Quantum Entanglement , 2010 .

[38]  Alexandru Baltag,et al.  A Dynamic-Logical Perspective on Quantum Behavior , 2008, Stud Logica.

[39]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  M. P. Soler,et al.  Characterization of hilbert spaces by orthomodular spaces , 1995 .

[41]  George W. Mackey,et al.  Quantum Mechanics and Hilbert Space , 1957 .

[42]  Kôdi Husimi Studies on the Foundation of Quantum Mechanics. I , 1937 .

[43]  Hirokazu Nishimura,et al.  Proof theory for minimal quantum logic I , 1994 .

[44]  Alexandru Baltag,et al.  LQP: the dynamic logic of quantum information , 2006, Mathematical Structures in Computer Science.

[45]  Robert Goldblatt,et al.  Orthomodularity is not elementary , 1984, Journal of Symbolic Logic.

[46]  Gary M. Hardegree The Conditional in Abstract and Concrete Quantum Logic , 1979 .

[47]  Shûichirô Maeda,et al.  Dimension Functions on Certain General Lattices , 1955 .

[48]  L. H. Loomis,et al.  The lattice theoretic background of the dimension theory of operator algebras , 1955 .

[49]  D. Deutsch The fabric of reality , 1997, The Art of Political Storytelling.

[50]  Saburo Tamura A gentzen formulation without the cut rule for ortholattices , 1988 .

[51]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[52]  Robert Goldblatt,et al.  Semantic analysis of orthologic , 1974, J. Philos. Log..

[53]  D. I. Blokhintsev Grundlagen der Quantenmechanik , 1936, Nature.

[54]  David J. Foulis,et al.  A Half-Century of Quantum Logic What Have We Learned? , 1999 .

[55]  Samson Abramsky,et al.  A categorical quantum logic , 2006, Math. Struct. Comput. Sci..

[56]  Mitio Takano Proof theory for minimal quantum logic: A remark , 1995 .