효율적인 소셜 검색을 위한 토픽기반 소셜 관계 랭크 알고리즘

지난 10여 년간, 정보기술 분야의 패러다임은 기계중심에서 인간중심으로, 기술기반에서 사용자가 쉽게 정보시스템에 참여하고 활용 할 수 있는 사용자 기반으로 변화되었다. 즉 소셜 네트워크를 이용하여 정보를 상호 공유하는 소셜 검색의 형태로 변화하고 있으며, 이와 같이 사람과 사람을 연결 해 주는 소셜 네트워크 서비스는 웹서비스와 융합을 통해 친구 맺기, 친구 찾기, 유사한 관심사를 갖고 있는 사람들과의 정보공유, 선호도 검색, 정보추천시스템 등 다양한 분야에 활용되고 있다. 본 논문에서는 토픽 기반 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. 제안 알고리즘은 소셜 네트워크 서비스를 웹 검색 엔진과 통합하는 것을 목적으로 하며, 소셜 관계 지수, 즉 Social Relation Rank와 검색 결과에 대한 선호도 사이의 상관관계를 분석하였다. 실험 과정에서 소셜 네트워크 안에 존재하는 일반적인 사람들은 정보 공유시 특정 분야에 대해 관심사가 유사할 경우 잘 모르는 타인들에 비해 친밀도가 높은 친구를 더 신뢰한다는 것을 확인 할 수 있었다. 따라서 제안 알고리즘은 소셜 검색의 신뢰성을 향상 시킬 수 있을 것으로 판단된다.