SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS

Geometric and solid modelling deal with the representation and manipulation of physical objects. Currently most geometric objects are formulated in terms of polynomial equations, thereby reducing many application problems to manipulating polynomial systems. Solving systems of polynomial equations is a fundamental problem in these geometric computations. The author presents an algorithm for solving polynomial equations. The combination of multipolynomial resultants and matrix computations underlies this efficient, robust and accurate algorithm.<<ETX>>

[1]  George Salmon Lessons introductory to the modern higher algebra , 1885 .

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  Tomoyuki Nishita,et al.  Curve intersection using Bézier clipping , 1990, Comput. Aided Des..

[4]  B. Sturmfels,et al.  Multigraded Resultants of Sylvester Type , 1994 .

[5]  Dinesh Manocha,et al.  Multipolynomial Resultant Algorithms , 1993, J. Symb. Comput..

[6]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[7]  Karl Mayr,et al.  Über die Lösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen , 1936 .

[8]  R. Bieri,et al.  The geometry of the set of characters iduced by valuations. , 1984 .

[9]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[10]  Christoph M. Hoffmann,et al.  A dimensionality paradigm for surface interrogations , 1990, Comput. Aided Geom. Des..

[11]  J. Darroch,et al.  Generalized Iterative Scaling for Log-Linear Models , 1972 .

[12]  Aristides A. G. Requicha,et al.  Solid modeling and beyond , 1992, IEEE Computer Graphics and Applications.

[13]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[14]  Dinesh Manocha,et al.  A new approach for surface intersection , 1991, SMA '91.

[15]  James T. Kajiya,et al.  Ray tracing parametric patches , 1982, SIGGRAPH.

[16]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[17]  D. Manocha,et al.  Algebraic and numeric techniques in modeling and robotics , 1992 .

[18]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .

[19]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[22]  Dinesh Manocha,et al.  Algorithms for intersecting parametric and algebraic curves , 1992 .

[23]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[24]  John K. McDonald Fiber polytopes and fractional power series , 1995 .

[25]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[26]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[27]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[28]  G. Stewart Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices , 1976 .

[29]  W. Gröbner,et al.  Über eine neue idealtheoretische Grundlegung der algebraischen Geometrie , 1938 .

[30]  T. Sederberg Implicit and parametric curves and surfaces for computer aided geometric design , 1983 .

[31]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[32]  Joe Warren,et al.  On the Applications of Multi-Equational Resultants , 1988 .

[33]  Alan Weinstein,et al.  Progress in mathematics , 1979 .

[34]  L. S. Shapley,et al.  10. A SIMPLE THREE-PERSON POKER GAME , 1951 .

[35]  Francesco Mallegni,et al.  The Computation of Economic Equilibria , 1973 .

[36]  N. V. Ilyushechkin Discriminant of the characteristic polynomial of a normal matrix , 1992 .

[37]  James Hardy Wilkinson,et al.  The evaluation of the zeros of ill-conditioned polynomials. Part I , 1959, Numerische Mathematik.

[38]  George M. Bergman,et al.  The logarithmic limit-set of an algebraic variety , 1971 .

[39]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[40]  Maria Grazia Marinari,et al.  ON MULTIPLICITIES IN POLYNOMIAL SYSTEM SOLVING , 1996 .

[41]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[42]  I. Emiris An E cient Algorithm for the Sparse Mixed Resultant John Canny ? and , 1993 .

[43]  Bernd Sturmfels,et al.  Initial Complexes of Prime Ideals , 1995 .

[44]  A. Morgan,et al.  SOLVING THE 6R INVERSE POSITION PROBLEM USING A GENERIC-CASE SOLUTION METHODOLOGY , 1991 .

[45]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[46]  John F. Canny,et al.  An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.

[47]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[48]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[49]  James H. Davenport,et al.  Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.

[50]  A. Iarrobino,et al.  Reducibility of the families of 0-dimensional schemes on a variety , 1972 .

[51]  W. Gröbner,et al.  Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten , 1939 .

[52]  Dinesh Manocha,et al.  Algorithms for Intersecting Parametric and Algebraic Curves II: Multiple Intersections , 1995, CVGIP Graph. Model. Image Process..

[53]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[54]  Ed Anderson,et al.  LAPACK users' guide - [release 1.0] , 1992 .

[55]  J. C. Owen,et al.  Algebraic solution for geometry from dimensional constraints , 1991, SMA '91.

[56]  B. Stengel,et al.  COMPUTING EQUILIBRIA FOR TWO-PERSON GAMES , 1996 .

[57]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[58]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .