Status of aerothermal modeling for current and future Mars exploration missions

The status of aerothermal analysis for Mars entry missions is reviewed. The aeroheating environment of all Mars missions to date has been dominated by convective heating. Two primary uncertainties in our ability to predict forebody convective heating are turbulence on a blunt lifting cone and surface catalysis in a CO2 environment. Future missions, particularly crewed vehicles, will encounter additional heating from shock-layer radiation due to a combination of larger size and faster entry velocity. Uncertainties inherent in the physical models employed to predict these phenomena are explored. Capabilities of ground test facilities to support aeroheating validation are also summarized. Engineering flight data from the Viking and Pathfinder missions, which may be useful for aerothermal model validation, are discussed. Examples are taken from past, present, and future Mars entry missions, including the twin Mars Exploration Rovers and the Mars Science Laboratory, scheduled for launch in 2009

[1]  Dinesh K. Prabhu,et al.  CFD code comparisons for Mars entry simulations , 1998 .

[2]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[3]  D. Schmitt,et al.  Base heating on an aerobraking orbital transfer vehicle , 1983 .

[4]  M. Wright,et al.  Recommended Collision Integrals for Transport Property Computations Part 1: Air Species , 2005 .

[5]  Richard A. Copeland,et al.  Experimental investigation of surface reactions in carbon monoxide and oxygen mixtures , 1999 .

[6]  Richard W. Powell,et al.  The effect of interplanetary trajectory options on a manned Mars aerobrake configuration , 1990 .

[7]  S. A. Losev,et al.  Relaxation Processes in Shock Waves , 1967 .

[8]  Brian R. Hollis,et al.  Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander , 2002 .

[9]  Graham V. Candler,et al.  Comparison of coupled radiative flow solutions with Project Fire II flight data , 1995 .

[10]  E. Venkatapathy,et al.  Mars Pathfinder computations including base-heating predictions , 1995 .

[11]  Robert D. Braun,et al.  Aerothermal Heating Predictions for Mars Microprobe , 1998 .

[12]  R. A. Mitcheltree,et al.  Wake Flow About the Mars Pathfinder Entry Vehicle , 1995 .

[13]  M. E. Tauber,et al.  Stagnation-point radiative heating relations for earth and Mars entries , 1991 .

[14]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[15]  S. Surzhikov,et al.  Kinetics and nonequilibrium radiation of CO2-N2 shock waves , 2001 .

[16]  D. Reda Review and synthesis of roughness-dominated transition correlations for reentry applications , 2002 .

[17]  Karl T. Edquist,et al.  Viking Afterbody Heating Computations and Comparisons to Flight Data , 2006 .

[18]  James N. Moss,et al.  Review of blunt body wake flows at hypersonic low density conditions , 1996 .

[19]  William M. Congdon,et al.  Mars Pathfinder entry temperature data, aerothermal heating, and heatshield material response , 1998 .

[20]  P. Kallemeyn,et al.  Mars Pathfinder Entry, Descent, and Landing Reconstruction , 1999 .

[21]  Richard W. Powell,et al.  Mars Polar Lander Aerothermodynamic and Entry Dispersion Analysis , 1999 .

[22]  L. Lees Hypersonic wakes and trails , 1964 .

[23]  Deepak Bose,et al.  Uncertainty and Sensitivity Analysis of Thermochemical Modeling for Titan Atmospheric Entry , 2004 .

[24]  M. Tauber,et al.  Reassessment of Effect of Dust Erosion on Heatshield of Mars Entry Vehicle , 2000 .

[25]  Deepak Bose,et al.  Uncertainty Analysis of Laminar Aeroheating Predictions for Mars Entries , 2005 .

[26]  Hans G. Hornung,et al.  Computational Modeling of T5 Laminar and Turbulent Heating Data on Blunt Cones, Part 1 : Titan Applications , 2005 .

[27]  Richard A. Thompson,et al.  A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K , 1989 .

[28]  Karl T. Edquist,et al.  Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle , 2005 .

[29]  P. Rini,et al.  Elemental Demixing in Air and Carbon Dioxide Stagnation Line Flows , 2004 .

[30]  Brian R. Hollis,et al.  Transition Onset and Turbulent Heating Measurements for the Mars Science Laboratory Entry Vehicle , 2005 .

[31]  James Brown,et al.  Turbulence Model Validation for Hypersonic Flows , 2002 .

[32]  James O. Arnold,et al.  NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual , 1996 .

[33]  Brian R. Hollis,et al.  Heat Shield Cavity Parametric Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell , 2002 .

[34]  David Stewart,et al.  Determination of surface catalytic efficiency for thermal protection materials - Room temperature to their upper use limit , 1996 .

[35]  M. Tauber,et al.  Heatshield erosion in a dusty Martian atmosphere , 1993 .

[36]  John D. Ramshaw,et al.  Self-Consistent Effective Binary Diffusion in Multicomponent Gas Mixtures , 1990 .

[37]  Frank S. Milos,et al.  Navier-Stokes Solutions with Finite Rate Ablation for Planetary Mission Earth Reentries , 2005 .

[38]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[39]  J. D. Ramshaw,et al.  Ambipolar diffusion in multicomponent plasmas , 1991 .

[40]  Robert W. Bailey,et al.  Cost-Benefit Analysis of the Aerocapture Mission Set , 2005 .

[41]  Karl T. Edquist,et al.  Aeroheating Environments for a Mars Smart Lander , 2002 .

[42]  Michael E. Tauber,et al.  A review of high-speed, convective, heat-transfer computation methods , 1989 .

[43]  Douglas Hart The encyclopedia of Soviet spacecraft , 1983 .

[44]  R. Roncoli,et al.  Mission design overview for the Mars Exploration Rover Mission , 2002 .

[45]  Kenneth Sutton,et al.  Equilibrium radiative heating tables for aerobraking in the Martian atmosphere , 1990 .

[46]  M. Wright,et al.  Recommended Collision Integrals for Transport Property Computations Part 2: Mars and Venus Entries , 2007 .

[47]  David W. Bogdanoff,et al.  Modeling and Experimental Validation of CN Radiation Behind a Strong Shock Wave , 2005 .

[48]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[49]  S. A. Losev,et al.  Radiation excited by shock waves in a CO2-N2-Ar mixture: Experiment and theory , 2001 .

[50]  M. E. Tauber,et al.  Mars Pathfinder Trajectory Based Heating and Ablation Calculations , 1995 .

[52]  P. Gnoffo,et al.  Multi-Component Diffusion With Application to Computational Aerothermodynamics , 1998 .

[53]  Daniel J. Rasky,et al.  Review of numerical procedures for computational surface thermochemistry , 1994 .

[54]  Frank Behrendt,et al.  EXPERIMENTAL AND THEORETICAL INVESTIGATION OF CO OXIDATION ON PLATINUM: BRIDGING THE PRESSURE AND MATERIALS GAP , 2000 .

[55]  C. G. Cooley Viking 75 project: Viking lander system primary mission performance report , 1977 .

[56]  A. J. Laderman,et al.  Effect of mass addition on the boundary layer of a hemisphere at Mach 6 , 1976 .

[57]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[58]  Gérard Degrez,et al.  Numerical Simulation of CO2 Non-Equilibrium Flows with Catalyzed Surface Reactions , 2003 .

[59]  William Willcockson,et al.  Mars Pathfinder Heatshield Design and Flight Experience , 1999 .

[60]  Anatoly Kolesnikov,et al.  Heat transfer simulation and surface catalycity prediction at the Martian atmosphere entry conditions , 1999 .

[61]  Steven P. Schneider Laminar-Turbulent Transition on Reentry Capsules and Planetary Probes , 2006 .

[62]  V. G. Gromov,et al.  Catalysis modeling for thermal protection systems of vehicles entering into Martian atmosphere , 2001 .

[63]  Grant Palmer,et al.  Comparison of methods to compute high-temperature gas viscosity , 2002 .

[64]  Karl T. Edquist,et al.  Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell , 2002 .

[65]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .