Dynamic Depletion of Vortex Stretching and Non-Blowup of the 3-D Incompressible Euler Equations
暂无分享,去创建一个
Ruo Li | Thomas Y. Hou | T. Hou | Ruo Li
[1] Steven A. Orszag,et al. Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes , 1993 .
[2] Robert McDougall Kerr. The outer regions in singular Euler , 1999 .
[3] Russel E. Caflisch,et al. Singularity formation for complex solutions of the 3D incompressible Euler equations , 1993 .
[4] T. Hou,et al. Improved Geometric Conditions for Non-Blowup of the 3D Incompressible Euler Equation , 2006 .
[5] Richard B. Pelz,et al. DIRECT NUMERICAL SIMULATION OF TRANSITION TO TURBULENCE FROM A HIGH-SYMMETRY INITIAL CONDITION , 1994 .
[6] Robert McDougall Kerr. Evidence for a Singularity of the Three Dimensional, Incompressible Euler Equations , 1993 .
[7] Richard B. Pelz,et al. Reconnection in orthogonally interacting vortex tubes: Direct numerical simulations and quantifications , 1992 .
[8] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[9] Peter Constantin,et al. Geometric Statistics in Turbulence , 1994, SIAM Rev..
[10] F. Hussain,et al. Simulation of vortex reconnection , 1989 .
[11] Norman J. Zabusky,et al. Vortex intensification and collapse of the Lissajous-elliptic ring: single- and multi-filament Biot-Savart simulations and visiometrics , 1995, Journal of Fluid Mechanics.
[12] F. Hussain,et al. Cross‐linking of two antiparallel vortex tubes , 1989 .
[13] Jerrold E. Marsden,et al. Diffeomorphism groups, hydrodynamics and relativity , 1972 .
[14] Richard B. Pelz,et al. Locally self-similar finite time collapse in a high-symmetry vortex filament model , 1997 .
[15] E. Siggia,et al. Collapsing solutions to the 3‐D Euler equations , 1990 .
[16] Robert McDougall Kerr. Velocity and scaling of collapsing Euler vortices , 2005 .
[17] Grauer,et al. Numerical computation of 3D incompressible ideal fluids with swirl. , 1991, Physical review letters.
[18] The evolution of a turbulent vortex , 1982 .
[19] C. Fefferman,et al. Geometric constraints on potentially singular solutions for the 3-D Euler equations , 1996 .
[20] Kai Germaschewski,et al. ADAPTIVE MESH REFINEMENT FOR SINGULAR SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS , 1998 .
[21] C. Greengard,et al. The vortex ring merger problem at infinite reynolds number , 1989 .
[22] T. Hou,et al. Geometric Properties and Nonblowup of 3D Incompressible Euler Flow , 2004, math-ph/0402032.
[23] Numerical scaling analysis of the small-scale structure in turbulence , 2005, math/0509027.
[24] A. Majda,et al. Vorticity and incompressible flow , 2001 .