Large eddy simulation of turbulent incompressible flows by a three‐level finite element method

The variational multiscale method provides a methodical framework for large eddy simulation of turbulent flows. In this work, a particular implementation in the form of a three-level finite element method separating large resolved, small resolved, and unresolved scales is proposed. Residual-free bubbles are used for the numerical approximation of the small-scale momentum equation. A stabilizing term is added, in order to take into account the effect of the small-scale continuity equation. This implementation guarantees the stability of the method without further provisions and offers substantial computational savings on the small-scale level. Furthermore, it is accounted for the unresolved scales by a specific dynamic modelling procedure. The method is tested for two different turbulent flow situations.

[1]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[2]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[3]  A. W. Vreman The filtering analog of the variational multiscale method in large-eddy simulation , 2003 .

[4]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[5]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[6]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[7]  Charbel Farhat,et al.  Unusual Stabilized Finite Element Methods and Residual-Free-Bubbles , 1996 .

[8]  A. Michalke,et al.  On the inviscid instability of the hyperbolictangent velocity profile , 1964, Journal of Fluid Mechanics.

[9]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[10]  J. Koseff,et al.  A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows , 1993 .

[11]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[12]  Martin Stynes,et al.  On the Stability of Residual-Free Bubbles for Convection-Diffusion Problemsand their Approximation by a Two-Level Finite Element Method. , 1997 .

[13]  Endre Süli,et al.  Modeling subgrid viscosity for advection–diffusion problems , 2000 .

[14]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[15]  P. Wesseling,et al.  Local Grid Refinement in Large-Eddy Simulation , 1997 .

[16]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[17]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[18]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[19]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[20]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[21]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[22]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[23]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[24]  J. Koseff,et al.  Reynolds number and end‐wall effects on a lid‐driven cavity flow , 1989 .

[25]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[26]  Marcel Lesieur,et al.  The mixing layer and its coherence examined from the point of view of two-dimensional turbulence , 1988, Journal of Fluid Mechanics.

[27]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[28]  T. H. Tsang,et al.  Large eddy simulation of turbulent flows by a least‐squares finite element method , 2001 .

[29]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[30]  Leopoldo P. Franca,et al.  On a two‐level finite element method for the incompressible Navier–Stokes equations , 2000 .

[31]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .

[32]  Antonini Macedo,et al.  Two Level Finite Element Method and its Application to the Helmholtz Equation , 1997 .

[33]  S. P. Oliveira,et al.  Pressure bubbles stabilization features in the Stokes problem , 2003 .

[34]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[35]  T. Iliescu,et al.  A Numerical Study of a Class of LES Models , 2003 .

[36]  Thomas J. R. Hughes,et al.  A space-time formulation for multiscale phenomena , 1996 .

[37]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .

[38]  Alessandro Russo,et al.  Further considerations on residual-free bubbles for advective - diffusive equations , 1998 .

[39]  Volker John,et al.  Large Eddy Simulation of Turbulent Incompressible Flows - Analytical and Numerical Results for a Class of LES Models , 2003, Lecture Notes in Computational Science and Engineering.

[40]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent incompressible flow , 2003 .

[41]  Franco Brezzi,et al.  $b=\int g$ , 1997 .