Semiconductor quantum-dot nanostructures: Their application in a new class of infrared photodetectors

Semiconductor quantum-dot nanostructures are interesting objects for fundamental as well as practical reasons. Fundamentally, they can form the basis of systems in which to study the quantum mechanics of electrons confined in zero-dimensional (0-D) space. In practice, the dots can be embedded in the active regions of a new class of electronic and optoelectronic devices with novel functionalities. This paper reviews the state-of-the-art in the use of these objects in infrared detectors. It describes the progress, challenges, and projections for continued development of normal-incidence intersublevel detectors operating in the spectral region between 6 and 20 /spl mu/m.

[1]  Jamie D. Phillips,et al.  Photoluminescence and far-infrared absorption in Si-doped self-organized InAs quantum dots , 1997 .

[2]  Tomonori Ishikawa,et al.  Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy , 1998 .

[3]  B. F. Levine Long-wavelength GaAs quantum-well infrared photodetectors , 1991, Other Conferences.

[4]  H. Schneider,et al.  Capture dynamics and far-infrared response in photovoltaic quantum well intersubband photodetectors , 1996 .

[5]  Yuansha Chen,et al.  Intraband absorption in the 8–12 μm band from Si-doped vertically aligned InGaAs/GaAs quantum-dot superlattice , 1998 .

[6]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[7]  P. Cohen,et al.  Relaxation of strained InGaAs during molecular beam epitaxy , 1990 .

[8]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[9]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[10]  K. Nishi,et al.  A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates , 1999 .

[11]  Egorov,et al.  Ultranarrow Luminescence Lines from Single Quantum Dots. , 1995, Physical review letters.

[12]  Harald Schneider,et al.  A 10 μm GaAs/AlxGa1−xAs intersubband photodetector operating at zero bias voltage , 1996 .

[13]  E. Towe,et al.  Tuning of conduction intersublevel absorption wavelengths in (In, Ga)As/GaAs quantum-dot nanostructures , 2000 .

[14]  N. Ledentsov,et al.  Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots , 1998 .

[15]  B. Levine,et al.  High performance InGaAs/GaAs quantum well infrared photodetectors , 1994 .

[16]  G. Bastard,et al.  Phonon-assisted capture and intradot Auger relaxation in quantum dots , 1999 .

[17]  W. A. Beck,et al.  Photoconductive gain and generation‐recombination noise in multiple‐quantum‐well infrared detectors , 1993 .

[18]  Yoshitaka Okada,et al.  Highly packed InGaAs quantum dots on GaAs(311)B , 1998 .

[19]  E. Towe,et al.  Strong normal-incidence infrared absorption and photo-current spectra from highly uniform (In,Ga)As/GaAs quantum dot structures , 1998 .

[20]  S. Li Recent progress in quantum well infrared photodetectors and focal plane arrays for IR imaging applications , 1997 .

[21]  D. Bimberg,et al.  Self‐organization processes of InGaAs/GaAs quantum dots grown by metalorganic chemical vapor deposition , 1996 .

[22]  D. Bimberg,et al.  High‐resolution x‐ray diffraction of self‐organized InGaAs/GaAs quantum dot structures , 1996 .

[23]  K. Nishi,et al.  Shape transition of InAs quantum dots by growth at high temperature , 1999 .

[24]  R. A. Logan,et al.  GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings , 1989 .

[25]  J. Brault,et al.  Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001) , 1999 .

[26]  K. Shiralagi,et al.  Selective formation and alignment of InAs quantum dots over mesa stripes along the [011] and [001] directions on GaAs (100) substrates , 1998 .

[27]  A. Madhukar,et al.  Stress-engineered spatially selective self-assembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates , 1998 .

[28]  J. P. Harbison,et al.  Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice , 1988 .

[29]  Kang L. Wang,et al.  Observation of inter-sub-level transitions in modulation-doped Ge quantum dots , 1999 .

[30]  K. M. S. V. Bandara,et al.  Optimization of two dimensional gratings for very long wavelength quantum well infrared photodetectors , 1994 .

[31]  K. M. S. V. Bandara,et al.  Recent Developments in Quantum-Well Infrared Photodetectors , 1995 .

[32]  Dong Pan,et al.  Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice , 1996 .

[33]  Sylvain Raymond,et al.  InAs self‐assembled quantum dots on InP by molecular beam epitaxy , 1996 .

[34]  Patrick Audebert,et al.  High-performance LWIR 256 x 256 HgCdTe focal plane array operating at 88 K , 1997, Defense, Security, and Sensing.

[35]  Kwong-Kit Choi,et al.  New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices , 1987 .

[36]  A. R. Kovsh,et al.  InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm , 1999 .

[37]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[38]  K. Goossen,et al.  Photovoltaic quantum well infrared detector , 1988 .

[39]  E. Towe,et al.  A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector , 1999 .

[40]  N. Mason,et al.  SELF-ASSEMBLED INSB QUANTUM DOTS GROWN ON GASB : A PHOTOLUMINESCENCE, MAGNETOLUMINESCENCE, AND ATOMIC FORCE MICROSCOPY STUDY , 1999 .

[41]  A. Madhukar,et al.  Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained InxGa1−xAs on GaAs(100) , 1990 .

[42]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[43]  Philippe Tribolet,et al.  Progress in HgCdTe homojunction infrared detectors , 1998 .

[44]  M. Henini,et al.  Optical properties and device applications of (InGa)As self-assembled quantum dots grown on (311)B GaAs substrates , 1998 .

[45]  Sarath D. Gunapala,et al.  Long-wavelength 640 x 484 GaAs/AlxGa1-xAs quantum well infrared photodetector focal plane array camera , 1997, Defense, Security, and Sensing.

[46]  Johann Peter Reithmaier,et al.  High-performance GaInAs/GaAs quantum-dot lasers based on a single active layer , 1999 .

[47]  R. Soref Extrinsic ir Photoconductivity of Si Doped with B, Al, Ga, P, As, or Sb , 1967 .

[48]  Hooman Mohseni,et al.  Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector , 1998 .

[49]  Optical properties of InAs quantum dots in a Si matrix , 1999 .

[50]  Shigeo Sugou,et al.  Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission , 1998 .

[51]  William E. Tennant,et al.  Molecular beam epitaxy (MBE) HgCdTe infrared focal plane array (IRFPA) flexible manufacturing , 1994, Optics & Photonics.

[52]  Martin Walther,et al.  Photovoltaic quantum well infrared photodetectors: The four-zone scheme , 1997 .

[53]  W. S. Hobson,et al.  Room-temperature 1.3 mum emission from InAs quantum dots grown by metal organic chemical vapor deposition , 1999 .

[54]  D. Tsui,et al.  Corrugated quantum well infrared photodetectors with polyimide planarization for detector array applications , 1998 .

[55]  Eric Costard,et al.  Technology of multiple quantum well infrared detectors , 1997, Defense, Security, and Sensing.

[56]  Yozo Shimada,et al.  Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .

[57]  Kang L. Wang,et al.  INTERSUBBAND ABSORPTION IN BORON-DOPED MULTIPLE GE QUANTUM DOTS , 1999 .

[58]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[59]  J. Le Bihan,et al.  Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: Quantum efficiency and nonlinear gain , 1998 .

[60]  P. Petroff,et al.  Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors , 1998 .

[61]  C. H. Wang,et al.  Characteristics of InGaAs quantum dot infrared photodetectors , 1998 .

[62]  K. M. S. V. Bandara,et al.  Improved performance of quantum well infrared photodetectors using random scattering optical coupling , 1994 .

[63]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[64]  Hansen,et al.  Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. , 1994, Physical review letters.

[65]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[66]  L. C. West,et al.  First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well , 1985 .

[67]  Iwan N. Stranski,et al.  Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander , 1937 .

[68]  C. H. Wang,et al.  Polarization dependence of intraband absorption in self-organized quantum dots , 1998 .

[69]  Alexander V. Uskov,et al.  Auger carrier capture kinetics in self-assembled quantum dot structures , 1998 .

[70]  Jean-Michel Gérard,et al.  Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots , 1997 .

[71]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[72]  Anupam Madhukar,et al.  Independent manipulation of density and size of stress-driven self-assembled quantum dots , 1998 .

[73]  H. Morkoç Wurtzite GaN-based heterostructures by molecular beam epitaxy , 1998 .

[74]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[75]  Y. Arakawa,et al.  EFFICIENT CARRIER RELAXATION MECHANISM IN INGAAS/GAAS SELF-ASSEMBLED QUANTUM DOTS BASED ON THE EXISTENCE OF CONTINUUM STATES , 1999 .

[76]  Hui C. Liu,et al.  How good is the polarization selection rule for intersubband transitions , 1998 .

[77]  R. Lowe-Webb,et al.  Determination of the shape of self-organized InAs/GaAs quantum dots by reflection high energy electron diffraction , 1998 .

[78]  H. Ohno,et al.  InAs self-organized quantum dashes grown on GaAs (211)B , 1997 .

[79]  Ichiro Ogura,et al.  Room‐temperature lasing operation of a quantum‐dot vertical‐cavity surface‐emitting laser , 1996 .

[80]  S. Takagi A Dynamical Theory of Diffraction for a Distorted Crystal , 1969 .

[81]  J. Bläsing,et al.  In enrichment in (In,Ga)As/GaAs quantum dots studied by high-resolution x-ray diffraction and pole figure analysis , 1999 .

[82]  A. R. Kovsh,et al.  Effect of matrix on InAs self-organized quantum dots on InP substrate , 1998 .

[83]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[84]  A Rogalski,et al.  Comparison of the performance of quantum well and conventional bulk infrared photodetectors. , 1997 .

[85]  Hajime Shoji,et al.  Effect of phonon bottleneck on quantum-dot laser performance , 1997 .

[86]  Sanjay Krishna,et al.  Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates , 1999 .

[87]  G. Solomon,et al.  EFFECTS OF MONOLAYER COVERAGE, FLUX RATIO, AND GROWTH RATE ON THE ISLAND DENSITY OF INAS ISLANDS ON GAAS , 1995 .

[88]  D. Pan,et al.  Conduction intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors , 1998 .

[89]  Robert Martin Eisberg,et al.  Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd Edition , 1974 .

[90]  Mayank T. Bulsara,et al.  Relaxed template for fabricating regularly distributed quantum dot arrays , 1997 .

[91]  D. Bouchier,et al.  Intraband absorption in Ge/Si self-assembled quantum dots , 1999 .

[92]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[93]  Qin Xu,et al.  Self-organization of (In,Ga)As/GaAs quantum dots on relaxed (In,Ga)As films , 1998 .

[94]  Masahiko Sano,et al.  CONTINUOUS-WAVE OPERATION OF INGAN/GAN/ALGAN-BASED LASER DIODES GROWN ON GAN SUBSTRATES , 1998 .