Local Analysis of Local Discontinuous Galerkin Method for the Time-Dependent Singularly Perturbed Problem

In this paper we will present the local stability analysis and local error estimate for the local discontinuous Galerkin (LDG) method, when solving the time-dependent singularly perturbed problems in one dimensional space with a stationary outflow boundary layer. Based on a general framework on the local stability, we obtain the optimal error estimate out of the local subdomain, which is nearby the outflow boundary point and has the width of $$\mathcal {O}(h\log (1/h))$$O(hlog(1/h)), for the semi-discrete LDG scheme and the fully-discrete LDG scheme with the second order explicit Runge–Kutta time-marching. Here $$h$$h is the maximum mesh length. The numerical experiments are given also.

[1]  O. Axelsson,et al.  Analytical and Numerical Approaches to Asymptotic Problems in Analysis. , 1983 .

[2]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[3]  Zhimin Zhang,et al.  Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems , 2003, Math. Comput..

[4]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[5]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[6]  MILOSLAV VLASAK AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR AN UNSTEADY SINGULARLY PERTURBED PROBLEM , 2013 .

[7]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[8]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: General Approach and Stability , 2008 .

[9]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[10]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[11]  M. Stynes,et al.  A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions , 1991 .

[12]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[13]  Shishkin,et al.  A Finite Difference Scheme on a Priori Adapted Meshes for a Singularly Perturbed Parabolic Convection-Diffusion Equation , 2008 .

[14]  Haijin Wang,et al.  ERROR ESTIMATE ON A FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR CONVECTION-DIFFUSION PROBLEM * , 2013 .

[15]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[16]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[17]  Zhimin Zhang,et al.  A NUMERICAL STUDY OF UNIFORM SUPERCONVERGENCE OF LDG METHOD FOR SOLVING SINGULARLY PERTURBED PROBLEMS , 2009 .

[18]  Lutz Tobiska,et al.  A finite difference analysis of a streamline diffusion method on a Shishkin mesh , 2004, Numerical Algorithms.

[19]  Miguel A. Fernández,et al.  Explicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems , 2010, SIAM J. Numer. Anal..

[20]  Hans-Görg Roos,et al.  Interior penalty discontinuous approximations of convection–diffusion problems with parabolic layers , 2005, Numerische Mathematik.

[21]  Chi-Wang Shu,et al.  Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data , 2014, Numerische Mathematik.

[22]  Yang Yang,et al.  Discontinuous Galerkin method for hyperbolic equations involving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delt , 2013, Numerische Mathematik.

[23]  Zhimin Zhang,et al.  SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS , 2007 .

[24]  Huiqing Zhu,et al.  LOCAL ERROR ESTIMATES OF THE LDG METHOD FOR 1-D SINGULARLY PERTURBED PROBLEMS , 2013 .

[25]  Johnny Guzmán,et al.  Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems , 2006, J. Num. Math..

[26]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..