Applications of Vibrational Spectroscopy in the Study of Explosives

Abstract : This article discusses the ways in which vibrational spectroscopy is applied to the study of the class of energetic materials that are commonly called explosives. The article begins with a very brief overview of types and classes of explosives, continues with a few remarks about how a vibrational spectroscopist might approach the study of explosives, discusses some of the most common methods applied to the study of explosives, provides a brief summary of several investigations, and provides a table of vibrational spectroscopic methods and how they have been applied to the study of explosives. A glossary and list of references is also provided. The scientific literature over the last several decades contains thousands of articles dealing with spectroscopy of explosives. Even so, the number of review articles dealing with the applications of vibrational spectroscopy to the study of explosives is limited. Our goal in writing this article is to provide an entry point for those interested in the study of vibrational spectroscopy of explosives, and a reference tool to the spectroscopist currently engaged in explosives research.

[1]  C. Wight,et al.  Transient thin film laser pyrolysis of RDX , 1993 .

[2]  T. Russell,et al.  High-pressure phase transition in {gamma}-hexanitrohexaazaisowurtzitane , 1992 .

[3]  T. Brill,et al.  Thermal decomposition of energetic materials 76: chemical pathways that control the burning rates of 5-aminotetrazole and its hydrohalide salts , 2000 .

[4]  T. Brill,et al.  Thermal decomposition of energetic materials 59. Characterization of the residue of hexanitrohexaazaisowurtzitane , 1993 .

[5]  T. Brill,et al.  Thermal decomposition of energetic materials 63. Surface reaction zone chemistry of simulated burning 1,3,5,5-tetranitrohexahydropyrimidine (DNNC or TNDA) compared to RDX , 1993 .

[6]  T. Brill,et al.  Thermal Decomposition of Energetic Materials 26. Simultaneous Temperature Measurements of the Condensed Phase and Rapid-Scan FT-IR Spectroscopy of the Gas Phase at High Heating Rates , 1987 .

[7]  C. Wight,et al.  EXPLOSIVE THERMAL DECOMPOSITION MECHANISM OF RDX , 1994 .

[8]  F. Pristera,et al.  ANALYSIS OF EXPLOSIVES BY INFRARED SPECTROSCOPY , 1960 .

[9]  Ian R. Lewis,et al.  Raman spectrometry and neural networks for the classification of wood types—1 , 1994 .

[10]  T. Brill,et al.  Thermal decomposition of energetic materials 3. A high-rate, in situ, FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables☆ , 1985 .

[11]  Thermal decomposition of energetic materials. Part 9. A relationship of molecular structure and vibrations to decomposition: polynitro-3,3,7,7-tetrakis(trifluoromethyl)-2,4,6,8-tetraazabicyclo[3.3.0]octanes , 1986 .

[12]  T. Brill,et al.  Thermal decomposition of energetic materials 21. The effect of the backbone composition on the products evolved upon rapid thermolysis of linear nitramines , 1987 .

[13]  T. Brill,et al.  Thermal decomposition of energetic materials 13. High-rate thermolysis of benzofuroxans and 3,4-dimethylfuroxan , 1986 .

[14]  F. Williams,et al.  Effect of photodecomposition on the infrared spectra of lead azide. I. Far infrared , 1974 .

[15]  W. R. Garrett,et al.  Infrared and Raman Spectra of Single‐Crystal α‐Lead Azide , 1971 .

[16]  Colin M. Hodges,et al.  The use of Fourier Transform Raman spectroscopy in the forensic identification of illicit drugs and explosives , 1990 .

[17]  Kevin L. McNesby,et al.  Characterization of raman spectral changes in energetic materials and propellants during heating , 1998 .

[18]  C. S. Coffey Phonon generation and energy localization by moving edge dislocations , 1981 .

[19]  T. Brill,et al.  T-Jump/FT-IR Spectroscopy: A New Entry into the Rapid, Isothermal Pyrolysis Chemistry of Solids and Liquids , 1992 .

[20]  T. Brill,et al.  Thermal decomposition of energetic materials. 25. Shifting of the dominant decomposition site by backbone substitution of alkylammonium nitrate salts , 1987 .

[21]  C. S. Coffey,et al.  Spectroscopic Determination of Impact Sensitivities of Explosives. , 1997 .

[22]  M. Q. Brewster,et al.  Optical Properties of Energetic Materials: RDX, HMX, AP, NC/NG, and HTPB , 1998 .

[23]  Thermal decomposition of energetic materials. 16. Solid-phase structural analysis and the thermolysis of 1,4-dinitrofurazano[3,4-b]piperazine , 1986 .

[24]  T. Brill,et al.  Crystal structure and molecular dynamics of the energetic nitramine 1,3,5,5-tetranitrohexahydropyrimidine and a comparison with 1,3,3,5,7,7-hexanitro-1,5-diazacyclooctane and 1,3,3-trinitroazetidine , 1985 .

[25]  T. Brill,et al.  Thermal decomposition of energetic materials 54. Kinetics and near-surface products of azide polymers AMMO, BAMO, and GAP in simulated combustion , 1991 .

[26]  E. Hintsa,et al.  Infrared multiphoton dissociation of RDX in a molecular beam , 1988 .

[27]  Ian R. Lewis,et al.  Raman spectrometry and neural networks for the classification of wood types. 2. Kohonen self-organizing maps , 1999 .

[28]  T. Brill,et al.  Thermal decomposition of energetic materials. 2. The thermolysis of nitrate and perchlorate salts of the pentaerythrityltetrammonium ion, C(CH2NH3)44+, by rapid-scan FTIR spectroscopy. The crystal structure of pentaerythrityltetrammonium nitrate ([C(CH2NH3)4](NO3)4) , 1985 .

[29]  N. Wingborg,et al.  The properties of ammonium dinitramide (ADN): Part 1, basic properties and spectroscopic data , 2000 .

[30]  T. Brill,et al.  Thermal decomposition of energetic materials 73: the identity and temperature dependence of “minor” products from flash-heated RDX , 1998 .

[31]  T. Brill,et al.  Thermal Decomposition of Energetic Materials 33: The Thermolysis Pathway of the Azidodinitromethyl Group , 1989 .

[32]  S. Thynell,et al.  Thermal decomposition studies of energetic materials using confined rapid thermolysis / FTIR spectroscopy , 1997 .

[33]  X. Gong,et al.  Ab initio studies of molecular geometries, electronic structures and infrared spectra of the substituted derivatives of methyl nitrate , 1999 .

[34]  T. Brill,et al.  Thermal decomposition of energetic materials 60. Major reaction stages of a simulated burning surface of NH4ClO4 , 1993 .

[35]  J. Steinfeld,et al.  Explosives detection: a challenge for physical chemistry. , 1998, Annual review of physical chemistry.

[36]  T. Brill,et al.  Thermal decomposition of energetic materials 12. Infrared spectral and rapid thermolysis studies of azide-containing monomers and polymers , 1986 .

[37]  W. Yuan,et al.  Study on the Melting Process of Nitrocellulose by Thermal Analysis Method , 1999 .

[38]  P. Hendra,et al.  The Raman spectra of some aromatic nitro compounds , 1991 .

[39]  T. Brill,et al.  Thermal decomposition of energetic materials 29—The fast thermal decomposition characteristics of a multicomponent material: liquid gun propellant 1845 , 1988 .

[40]  D. Sorescu,et al.  Theoretical and experimental studies of the structure and vibrational spectra of NTO , 1996 .

[41]  T. Brill,et al.  Thermal decomposition of energetic materials 65. Conversion of insensitive explosives (NTO, ANTA) and related compounds to polymeric melon-like cyclic azine burn-rate suppressants , 1994 .

[42]  S. Block,et al.  Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behavior of RDX , 1991 .

[43]  T. Brill,et al.  Thermal decomposition of energetic materials: 20. A comparison of the structural properties and thermal reactivity of an acyclic and cyclic tetramethylenetetranitramine pair , 1987 .

[44]  T. Russell,et al.  EXPERIMENTAL AND COMPUTATIONAL STUDIES OF THE STRUCTURE AND VIBRATIONAL SPECTRA OF AZETIDINE DERIVATIVES , 1999 .

[45]  Thermal decomposition of energetic materials. 7. High-rate FTIR studies and the structure of 1,1,1,3,6,8,8,8-octanitro-3,6-diazaoctane , 1985 .

[46]  D. Henderson,et al.  Diffusion Kinetics of TNT in Acrylonitrile—Butadiene Rubber via FT-IR/ATR Spectroscopy , 1997 .

[47]  F. Williams,et al.  Infrared absorption spectra of doped and undoped lead azide , 1973 .

[48]  T. Brill,et al.  Thermal decomposition of energetic materials. 18. Relationship of molecular composition to nitrous acid formation: bicyclo and spiro tetranitramines , 1986 .

[49]  Ian R. Lewis,et al.  Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector , 1995 .

[50]  T. Brill,et al.  Thermal decomposition of energetic materials 53. Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane , 1991 .

[51]  T. Russell,et al.  Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane , 1993 .

[52]  T. Brill,et al.  Thermal decomposition of energetic materials 50. Kinetics and mechanism of nitrate ester polymers at high heating rates by SMATCH/FTIR spectroscopy , 1991 .

[53]  Thomas B. Brill,et al.  Thermal decomposition of energetic materials 31—Fast thermolysis of ammonium nitrate, ethylenediammonium dinitrate and hydrazinium nitrate and the relationship to the burning rate , 1989 .

[54]  T. Brill,et al.  Thermal Decomposition of Energetic Materials 70: Kinetics of Organic Peroxide Decomposition Derived from the Filament Control Voltage of T-Jump/FT-IR Spectroscopy , 1997 .

[55]  T. Brill,et al.  Thermal decomposition of energetic materials 74. volatile metal isocyanates from flash pyrolysis metal-NTO and metal-picrate salts and an application hypothesis , 2000 .

[56]  P. S. Makashir,et al.  Spectroscopic and Thermal Studies on 2,4,6-trinitro Toluene (TNT) , 1999 .

[57]  Thomas B. Brill,et al.  Thermal decomposition of energetic materials 58. Chemistry of ammonium nitrate and ammonium dinitramide near the burning surface temperature , 1993 .

[58]  Thomas B. Brill,et al.  Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions , 1991 .

[59]  R. Fifer,et al.  Applications of Fourier Transform Infrared Photoacoustic Spectroscopy to Solid Propellant Characterization , 1991 .

[60]  T. Huiming,et al.  Investigation on interfacial bonding in HMX-containing model propellant composite , 1995 .

[61]  T. Brill,et al.  Thermal decomposition of energetic materials. 8. Evidence of an oscillating process during the high-rate thermolysis of hydroxylammonium nitrate, and comments on the interionic interactions , 1986 .

[62]  Lina Zhang,et al.  Effects of molecular weight of nitrocellulose on structure and properties of polyurethane nitrocellulose IPNs , 1999 .

[63]  Robert W. Field,et al.  INFRARED ABSORPTION OF EXPLOSIVE MOLECULE VAPORS , 1997 .

[64]  M. Brewster,et al.  Optical Properties of Energetic Materials from Infrared Spectroscopy , 1997 .

[65]  P. S. Makashir,et al.  Spectroscopic and Thermal Studies on Pentaerythritol Tetranitrate (PETN) , 1999 .

[66]  T. Brill,et al.  The thermal decomposition of energetic materials. Part 64. Kinetics of decomposition of furazano( 3,4,b) piperazine and its 1,4-dinitro nitramine derivative , 1994 .

[67]  T. Brill,et al.  Thermal decomposition of energetic materials. 6. Solid-phase transitions and the decomposition of 1,2,3-triaminoguanidinium , 1985 .

[68]  Zhongfan Liu,et al.  SEIR and SERS of an Azobenzene Acid Monolayer on Silver Island Films , 1999 .

[69]  T. Brill,et al.  Thermal decomposition of energetic materials. Part 9. Polymorphism, crystal structures, and thermal decomposition of polynitroazabicyclo[3.3.1]nonanes , 1986 .

[70]  E. Stevens,et al.  Synthesis, Thermal Stability and Impact Stability of Novel Tetranitro‐Dipyridotetraazapentalene Derivatives , 2000 .

[71]  T. Brill,et al.  Spectroscopy of Hydrothermal Reactions III: The Water—Gas Reaction, “Hot Spots”, and Formation of Volatile Salts of NCO− from Aqueous [NH3(CH2) n NH3]NO3 (n = 2, 3) at 720 K and 276 Bar by T-Jump/FT-IR Spectroscopy , 1996 .

[72]  T. Brill,et al.  Thermal decomposition of energetic materials 52; On the foam zone and surface chemistry of rapidly decomposing HMX , 1991 .

[73]  R. Schwarzenbach,et al.  In Situ Spectroscopic Investigations of Adsorption Mechanisms of Nitroaromatic Compounds at Clay Minerals , 1997 .

[74]  X. Heming,et al.  Theoretical Study on Tetrazole and its Derivatives: 4. Ab Initio Study on Hydroxyl Derivatives of Tetrazole , 1999 .

[75]  T. Brill,et al.  Thermal decomposition of energetic materials 67. Hydrazinium nitroformate (HNF) rates and pathways under combustionlike conditions , 1995 .

[76]  T. Brill,et al.  Thermal Decomposition of Energetic Materials 37. SMATCH/FT-IR (Simultaneous MAss and Temperature CHange/FT-IR) Spectroscopy , 1990 .

[77]  S. Rosenwaks,et al.  Dynamics of the detonation products of lead azide. I: Hydrodynamics , 1992 .

[78]  A. J. Amass,et al.  Synthesis of narrow molecular weight α,ω-hydroxy telechelic poly(glycidyl nitrate) and estimation of theoretical heat of explosion , 1996 .

[79]  U. Teipel,et al.  Crystallization of Spherical Ammonium Dinitramide (ADN) Particles , 2000 .

[80]  N. Holmes,et al.  Low-temperature reflection/absorption IR study of thin films of nitric acid hydrates and ammonium nitrate adsorbed on gold foil , 1996 .

[81]  Y. Oyumi,et al.  Plateau Burning Characteristics of AP Based Azide Composite Propellants , 1995 .

[82]  T. Brill,et al.  Thermal decomposition of energetic materials 11. Condensed phase structural characteristics and high rate thermolysis of di- and trinitroaliphatic carboxylic acids and carbonates , 1986 .

[83]  D. Sorescu,et al.  Theoretical Studies of the Structure, Tautomerism, and Vibrational Spectra of 3-Amino-5-nitro-1,2,4-triazole , 1998 .

[84]  T. Brill,et al.  Thermal decomposition of energetic materials 4. High-rate, in situ, thermolysis of the four, six, and eight membered, oxygen-rich, gem-dinitroalkyl cyclic nitramines, TNAZ, DNNC, and HNDZ , 1985 .

[85]  I. R. Lewis,et al.  Interpretation of Raman Spectra of Nitro-Containing Explosive Materials. Part I: Group Frequency and Structural Class Membership , 1997 .

[86]  T. Brill,et al.  SURFACE CHEMISTRY OF BURNING EXPLOSIVES AND PROPELLANTS , 1995 .

[87]  J. Akhavan Analysis of high-explosive samples by Fourier transform Raman spectroscopy , 1991 .

[88]  G. Norwitz,et al.  Infrared macro and semimicro determination of nitrogen in raw nitrocellulose and nitrocellulose contained in propellants. , 1973, Talanta.

[89]  L. Merhari,et al.  Fourier transform infrared study of ion irradiated nitrocellulose , 1990 .

[90]  J. Agrawal,et al.  Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose , 1995 .

[91]  M. Tafipolsky,et al.  Structure and vibrational spectra of dinitromethane and trinitromethane , 1999 .

[92]  T. Brill,et al.  Thermal decomposition of energetic materials 5. High-rate, in situ, thermolysis of two nitrosamine derivatives of RDX by FTIR spectroscopy , 1985 .

[93]  Vibrational Analysis of 1,3,3-Trinitroazetidine Using Matrix Isolation Infrared Spectroscopy and Quantum Chemical Calculations , 1997 .

[94]  Ian R. Lewis,et al.  Interpretation of Raman Spectra of Nitro-Containing Explosive Materials. Part II: The Implementation of Neural, Fuzzy, and Statistical Models for Unsupervised Pattern Recognition , 1997 .

[95]  T. Brill,et al.  Thermal decomposition of energetic materials 49. Thermolysis routes of mono- and diaminotetrazoles , 1991 .

[96]  T. Brill,et al.  In situ characterization of the “melt” phase of RDX and HMX by rapid-scan FTIR spectroscopy , 1984 .

[97]  Anders Hagfeldt,et al.  Lithium Intercalation in Nanoporous Anatase TiO2 Studied with XPS , 1997 .

[98]  T. Brill,et al.  Thermal decomposition of energetic materials 27. Synthesis, characterization, and thermolysis of Cu(II)-doped “blue RDX” , 1988 .

[99]  J. Field,et al.  Initiation and propagation in primary explosives , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[100]  J. Wiench,et al.  The tetrazole–azide tautomerism of some nitrotetrazolo [1,5-a]pyridines studied by NMR, IR spectroscopy and molecular orbital calculations , 1999 .

[101]  B. Rice,et al.  Ab Initio and Nonlocal Density Functional Study of 1,3,5-Trinitro-s-triazine (RDX) Conformers , 1997 .

[102]  T. Brill,et al.  Thermal decomposition of energetic materials 71: Structure-decomposition and kinetic relationships in flash pyrolysis of Glycidyl Azide Polymer (GAP) , 1998 .

[103]  T. Brill,et al.  Thermal decomposition of energetic materials 22. The contrasting effects of pressure on the high-rate thermolysis of 34 energetic compounds , 1987 .

[104]  C. S. Miser,et al.  Characterization of Solid Propellant and its Connection to Aging Phenomena , 1992 .

[105]  T. Brill,et al.  CONDENSED-PHASE KINETICS OF CYCLOTRIMETHYLENETRINITRAMINE BY MODELING THE T-JUMP/INFRARED SPECTROSCOPY EXPERIMENT , 1996 .

[106]  T. Brill,et al.  Thermal Decomposition of Energetic Materials. 68. Decomposition and Sublimation Kinetics of NTO and Evaluation of Prior Kinetic Data , 1995 .

[107]  Thermal decomposition of energetic materials. 19. Unusual condensed-phase and thermolysis properties of a mixed azidomethyl nitramine: 1,7-diazido-2,4,6-trinitro-2,4,6-triazaheptane , 1987 .