Block Matrix Formulations for Evolving Networks

Many types of pairwise interactions take the form of a fixed set of nodes with edges that appear and disappear over time. In the case of discrete-time evolution, the resulting evolving network may be represented by a time-ordered sequence of adjacency matrices. We consider here the issue of representing the system as a single, higher-dimensional block matrix, built from the individual time slices. We focus on the task of computing network centrality measures. From a modeling perspective, we show that there is a suitable block formulation that allows us to recover dynamic centrality measures respecting time's arrow. From a computational perspective, we show that the new block formulation leads to the design of more effective numerical algorithms. In particular, we describe matrix-vector product based algorithms that exploit sparsity. Results are given on realistic data sets.

[1]  Alexander V. Mantzaris,et al.  Asymmetry through time dependency , 2016 .

[2]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[3]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Alexander V. Mantzaris,et al.  Discovering and validating influence in a dynamic online social network , 2013, Social Network Analysis and Mining.

[6]  Michele Benzi,et al.  Total communicability as a centrality measure , 2013, J. Complex Networks.

[7]  Noshir S. Contractor,et al.  The Social Behaviors of Experts in Massive Multiplayer Online Role-Playing Games , 2009, 2009 International Conference on Computational Science and Engineering.

[8]  Miguel Romance,et al.  Eigenvector centrality of nodes in multiplex networks , 2013, Chaos.

[9]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[10]  Peter Grindrod,et al.  A Matrix Iteration for Dynamic Network Summaries , 2013, SIAM Rev..

[11]  Lothar Reichel,et al.  Block Gauss and Anti-Gauss Quadrature with Application to Networks , 2013, SIAM J. Matrix Anal. Appl..

[12]  Lothar Reichel,et al.  Applications of Anti-Gauss Quadrature Rules in Linear Algebra , 1999 .

[13]  Peter Grindrod,et al.  A dynamical systems view of network centrality , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Todd Graham,et al.  Discursive Equality and Everyday Talk Online: The Impact of "Superparticipants" , 2014, J. Comput. Mediat. Commun..

[15]  Peter Grindrod,et al.  Bistability through Triadic Closure , 2012, Internet Math..

[16]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[17]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[18]  Gene H. Golub,et al.  Applications and Computation of Orthogonal Polynomials , 1999 .

[19]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Michele Benzi,et al.  MATRIX FUNCTIONS , 2006 .

[21]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[22]  Mason A. Porter,et al.  Eigenvector-Based Centrality Measures for Temporal Networks , 2015, Multiscale Model. Simul..

[23]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..

[24]  Charles Van Loan,et al.  Block Tensor Unfoldings , 2011, SIAM J. Matrix Anal. Appl..

[25]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[26]  Stephen P. Borgatti,et al.  Centrality and network flow , 2005, Soc. Networks.

[27]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[28]  Desmond J. Higham,et al.  Betweenness in time dependent networks , 2015 .

[29]  Martin G. Everett,et al.  A Graph-theoretic perspective on centrality , 2006, Soc. Networks.

[30]  Jean Scholtz,et al.  VAST 2008 Challenge: Introducing mini-challenges , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[31]  Desmond J. Higham,et al.  CONTEST: A Controllable Test Matrix Toolbox for MATLAB , 2009, TOMS.