A monolithic inertial measurement unit fabricated with improved DRIE post-CMOS process

This paper reports a monolithic CMOS-MEMS inertial measurement unit (IMU), which is composed of a 3-axis accelerometer, a Z-axis and a lateral-axis gyroscope. The IMU is integrated with interface circuits on a 5×5mm2 foundry CMOS chip and fabricated with an improved DRIE post-CMOS bulk micromachining process. The new process incorporates a metal deposition to provide a thermal path for isolated structures during DRIE etching. The X/Y-axis accelerometer achieves a sensitivity of 191mV/g with a noise floor of 35µg/√Hz, and those parameters of the Z-axis are 124mV/g and 56µg/√Hz, respectively. The Z-axis gyroscope has a sensitivity of 0.3mV/°/s and a noise floor of 0.2°/s/√Hz. The characterization of X/Y-axis gyroscope is ongoing.

[1]  Huikai Xie,et al.  A Low-Power Low-Noise Dual-Chopper Amplifier for Capacitive CMOS-MEMS Accelerometers , 2011, IEEE Sensors Journal.

[2]  G. Fedder,et al.  A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50-g = Hz Monolithic CMOS MEMS Accelerometer , 2004 .

[3]  Gary K. Fedder,et al.  Integrated Microelectromechanical Gyroscopes , 2003 .

[4]  Ching-Liang Dai,et al.  A maskless post-CMOS bulk micromachining process and its application , 2005 .

[5]  G. Fedder,et al.  Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope , 2003 .

[6]  Huikai Xie,et al.  Process Development for CMOS-MEMS Sensors With Robust Electrically Isolated Bulk Silicon Microstructures , 2007, Journal of Microelectromechanical Systems.

[7]  Huikai Xie,et al.  A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier , 2008, IEEE Sensors Journal.

[8]  Bernhard E. Boser,et al.  A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics , 1999, IEEE J. Solid State Circuits.

[9]  Bernhard E. Boser,et al.  An integrated Surface micromachined capacitive lateral accelerometer with 2 uG/rt-Hz resolution , 2002 .

[10]  Hidekuni Takao,et al.  A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining , 2001 .

[11]  C. Hagleitner,et al.  CMOS MEMS - present and future , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[12]  K. Najafi,et al.  A monolithic three-axis micro-g micromachined silicon capacitive accelerometer , 2005, Journal of Microelectromechanical Systems.

[13]  S. Sherman,et al.  Single-chip surface micromachined integrated gyroscope with 50°/h Allan deviation , 2002, IEEE J. Solid State Circuits.

[14]  Hao Luo,et al.  A copper CMOS-MEMS Z-axis gyroscope , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[15]  G.K. Fedder,et al.  A low-noise low-offset capacitive sensing amplifier for a 50-/spl mu/g//spl radic/Hz monolithic CMOS MEMS accelerometer , 2004, IEEE Journal of Solid-State Circuits.

[16]  Jordi Madrenas,et al.  Experiments on the Release of CMOS-Micromachined Metal Layers , 2010, J. Sensors.

[17]  Oliver Brand,et al.  Microsensor Integration Into Systems-on-Chip , 2006, Proceedings of the IEEE.