Measuring liquid crystal elastic constants with free energy perturbations.

A first principles method is proposed to calculate the Frank elastic constants of nematic liquid crystals. These include the constants corresponding to standard splay, twist and bend deformations, and an often-ignored surface-like contribution known as saddle-splay. The proposed approach is implemented on the widely studied Gay-Berne (3, 5, 2, 1) model [J. G. Gay and B. J. Berne, J. Chem. Phys., 1981, 74, 3316], and the effects of temperature and system size on the elastic constants are examined in the nematic phase. The results of simulations for splay, twist, and bend elastic constants are consistent with those from previous literature reports. The method is subsequently applied to the saddle-splay elastic constant k24 which is found to exist at the limits of the Ericksen inequalities governing positive definite free energy. Finally, extensions of the method are discussed that present a new paradigm for in silico measurements of elastic constants.

[1]  G. R. Luckhurst,et al.  A shape model for molecular ordering in nematics , 1992 .

[2]  Oleg D. Lavrentovich,et al.  Soft Matter Physics: An Introduction , 2002 .

[3]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay–Berne mesogen , 1999 .

[4]  Bruce J. Berne,et al.  Gaussian Model Potentials for Molecular Interactions , 1972 .

[5]  A. V. Zakharov,et al.  Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach. , 2013, The Journal of chemical physics.

[6]  Doane,et al.  Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Carlos Vega,et al.  The global phase diagram of the Gay–Berne model , 2002 .

[9]  Claudio Zannoni,et al.  A Gay–Berne potential for dissimilar biaxial particles , 1998 .

[10]  Doane,et al.  Determination of the liquid-crystal surface elastic constant K24. , 1991, Physical review letters.

[11]  D. Monselesan,et al.  An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .

[12]  Cleaver,et al.  Extension and generalization of the Gay-Berne potential. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  A. V. Zakharov,et al.  STRUCTURAL AND ELASTIC PROPERTIES OF THE DIPOLAR GAY-BERNE MODEL , 1998 .

[14]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[15]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[16]  V. Palleschi,et al.  A new torsion pendulum technique to measure the twist elastic constant of liquid crystals , 1985 .

[17]  D. Cleaver,et al.  Computer simulations of the elastic properties of liquid crystals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[18]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[19]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[20]  C. Oseen,et al.  The theory of liquid crystals , 1933 .

[21]  M. Markus,et al.  Oscillations and turbulence induced by an activating agent in an active medium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  N. Abbott,et al.  Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets. , 2013, Soft matter.

[23]  S. Lee,et al.  Computations of the phase equilibrium, elastic constants, and viscosities of a hard-rod nematic liquid crystal , 1986 .

[24]  R. Memmer,et al.  Computer simulation of chiral liquid crystal phases. I. The polymorphism of the chiral Gay-Berne fluid , 1993 .

[25]  N. V. Madhusudana,et al.  Elasticity and Orientational Order in Some Cyanobiphenyls: Part IV. Reanalysis of the Data , 1982 .

[26]  Iain W. Stewart,et al.  The Static and Dynamic Continuum Theory of Liquid Crystals , 2001 .

[27]  A. Ferrarini,et al.  Molecular field theory with atomistic modeling for the curvature elasticity of nematic liquid crystals. , 2009, The Journal of chemical physics.

[28]  N. Abbott,et al.  Design of surfaces for liquid crystal-based bioanalytical assays. , 2010, ACS applied materials & interfaces.

[29]  S. Shri Curvature elasticity in liquid crystals , 1996 .

[30]  Amelia Carolina Sparavigna,et al.  Periodic stripe domains and hybrid-alignment regime in nematic liquid crystals: Threshold analysis. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[32]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[33]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXVII. The direct pair correlation function of the Gay–Berne discotic nematic and estimates of its elastic constants , 1997 .

[34]  N. Abbott,et al.  Size-dependent ordering of liquid crystals observed in polymeric capsules with micrometer and smaller diameters. , 2009, Angewandte Chemie.

[35]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[36]  Juan J de Pablo,et al.  Density of states-based molecular simulations. , 2012, Annual review of chemical and biomolecular engineering.

[37]  Stephen M. Kelly,et al.  Liquid crystals for twisted nematic display devices , 1999 .

[38]  G. R. Luckhurst,et al.  Crucial role of molecular curvature for the bend elastic and flexoelectric properties of liquid crystals: mesogenic dimers as a case study , 2011 .

[39]  V G Nazarenko,et al.  Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions. , 2004, Physical review letters.

[40]  H. Takezoe,et al.  Determination of Ki (i = 1–3) and μj (j = 2–6) in 5CB by observing the angular dependence of Rayleigh line spectral widths , 1989 .

[41]  L. F. Rull,et al.  LIQUID-VAPOUR COEXISTENCE OF THE GAY-BERNE FLUID BY GIBBS-ENSEMBLE SIMULATION , 1990 .

[42]  C. Murphy,et al.  Endotoxin-Induced Structural Transformations in Liquid Crystalline Droplets , 2011, Science.

[43]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[44]  L. F. Rull,et al.  LOCATION OF THE ISOTROPIC-NEMATIC TRANSITION IN THE GAY-BERNE MODEL , 1991 .

[45]  Schmidt Normal-distortion-mode approach to liquid crystal elastic energy. , 1990, Physical review letters.

[46]  A. Fernández-Nieves,et al.  Stable nematic droplets with handles , 2012, Proceedings of the National Academy of Sciences.

[47]  Local structure in nematic and isotropic liquid crystals , 2003, cond-mat/0303653.

[48]  Claudio Zannoni,et al.  Towards in silico liquid crystals. Realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[49]  Luis F. Rull,et al.  Liquid crystal phase diagram of the Gay-Berne fluid , 1991 .

[50]  Gubbins,et al.  Dynamics of the Gay-Berne fluid. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[51]  C. Brooks Computer simulation of liquids , 1989 .

[52]  Mark R. Wilson,et al.  Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals , 1996 .

[53]  O. Lavrentovich,et al.  Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal. , 2005, Physical review letters.

[54]  Jiaye Su,et al.  An atomistic simulation for 4-cyano-4'-pentylbiphenyl and its homologue with a reoptimized force field. , 2011, The journal of physical chemistry. B.

[55]  J. Hernandez-Ortiz,et al.  Morphological transitions in liquid crystal nanodroplets , 2012 .

[56]  N. David Mermin,et al.  Crystalline liquids: the blue phases , 1989 .

[57]  D. Forster Hydrodynamics and correlation functions in ordered systems: Nematic liquid crystals☆ , 1974 .

[58]  J. D. de Pablo,et al.  Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate: sphere size effects. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[60]  Elastic constants from direct correlation functions in nematic liquid crystals: A computer simulation study , 2001, cond-mat/0107581.

[61]  C. Zannoni,et al.  Can nematic transitions be predicted by atomistic simulations? A computational study of the odd-even effect. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  Gary M. Koenig,et al.  Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids , 2011 .

[63]  J. Ericksen,et al.  Inequalities in Liquid Crystal Theory , 1966 .

[64]  N. Tamaoki,et al.  Effects of doped dialkylazobenzenes on helical pitch of cholesteric liquid crystal with medium molecular weight: utilisation for full-colour image recording , 2001 .

[65]  A. Yoshizawa,et al.  A blue phase observed for a novel chiral compound possessing molecular biaxiality , 2005 .

[66]  A. Poniewierski,et al.  Statistical theory of the elastic constants of nematic liquid crystals , 1979 .

[67]  G. R. Luckhurst,et al.  Representation of pair correlations in nematics , 2001 .

[68]  D. Frenkel,et al.  Calculation of liquid-crystal Frank constants by computer simulation. , 1988, Physical review. A, General physics.

[69]  Gary M. Koenig,et al.  Characterization of the reversible interaction of pairs of nanoparticles dispersed in nematic liquid crystals. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[70]  Vincent P. Tondiglia,et al.  Electrically switchable volume gratings in polymer‐dispersed liquid crystals , 1994 .

[71]  V. Fréedericksz,et al.  Forces causing the orientation of an anisotropic liquid , 1933 .

[72]  J. Hernandez-Ortiz,et al.  Liquid crystal mediated interactions between nanoparticles in a nematic phase. , 2012, Langmuir : the ACS journal of surfaces and colloids.