Monte Carlo evaluation of quantal analysis in the light of Ca2+ dynamics and the geometry of secretion

[1]  A. Ewing,et al.  Calculation of transmitter concentration in individual PC12 cell vesicles with electrochemical data and a distribution of vesicle size obtained by electron microscopy , 1999, Journal of Neuroscience Methods.

[2]  J. Bekkers,et al.  Quantal amplitude and quantal variance of strontium‐induced asynchronous EPSCs in rat dentate granule neurons , 1999, The Journal of physiology.

[3]  Mark J. Wall,et al.  Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse , 1998, Nature Neuroscience.

[4]  M. Vitale,et al.  Comparison of vesicular volume and quantal size in bovine chromaffin cells , 1998, Neuroscience.

[5]  J J Jack,et al.  Quantal analysis of excitatory synapses in rat hippocampal CA1 In Vitro during low‐frequency depression , 1997, The Journal of physiology.

[6]  H. Rabie,et al.  Monte Carlo simulation of spontaneous miniature excitatory postsynaptic currents in rat hippocampal synapse in the presence and absence of desensitization , 1997, Pflügers Archiv.

[7]  E. Neher,et al.  Linearized Buffered Ca2+ Diffusion in Microdomains and Its Implications for Calculation of [Ca2+] at the Mouth of a Calcium Channel , 1997, The Journal of Neuroscience.

[8]  J J Jack,et al.  The effects of synaptic noise on measurements of evoked excitatory postsynaptic response amplitudes. , 1997, Biophysical journal.

[9]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[10]  P. Saggau,et al.  Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. , 1997, Biophysical journal.

[11]  E. Neher,et al.  Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. , 1997, Biophysical journal.

[12]  G D Smith,et al.  Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. , 1996, Biophysical journal.

[13]  P Heggelund,et al.  Quantal properties of spontaneous EPSCs in neurones of the guinea‐pig dorsal lateral geniculate nucleus. , 1996, The Journal of physiology.

[14]  R. Fettiplace,et al.  A theoretical study of calcium microdomains in turtle hair cells. , 1996, Biophysical journal.

[15]  E. F. Stanley,et al.  Single L‐type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. , 1996, The Journal of physiology.

[16]  C. Govind,et al.  Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release. , 1996, Journal of neurophysiology.

[17]  R. Wightman,et al.  Vesicular Quantal Size Measured by Amperometry at Chromaffin, Mast, Pheochromocytoma, and Pancreatic β‐Cells , 1996, Journal of neurochemistry.

[18]  E. Friauf,et al.  Distribution of the calcium‐binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats , 1996, The Journal of comparative neurology.

[19]  L. M. Wahl,et al.  Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse. , 1996, Journal of neurophysiology.

[20]  WG Regehr,et al.  A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  M. I. Glavinović,et al.  Decrease of quantal size and quantal content during tetanic stimulation detected by focal recording , 1995, Neuroscience.

[22]  H. Horstmann,et al.  Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells , 1995, Neuron.

[23]  C. Stevens,et al.  Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. , 1995, Journal of neurophysiology.

[24]  H. Meiri,et al.  The difference in shape of spontaneous and uniquantal evoked synaptic potentials in frog muscle. , 1995, The Journal of physiology.

[25]  E. Stuenkel,et al.  Regulation of intracellular calcium and calcium buffering properties of rat isolated neurohypophysial nerve endings. , 1994, The Journal of physiology.

[26]  P Heggelund,et al.  The quantal size at retinogeniculate synapses determined from spontaneous and evoked EPSCs in guinea‐pig thalamic slices. , 1994, The Journal of physiology.

[27]  M. Charlton,et al.  Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses. , 1994, Journal of neurophysiology.

[28]  John M. Bekkers,et al.  Quantal analysis of synaptic transmission in the central nervous system , 1994, Current Opinion in Neurobiology.

[29]  W A Roberts Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  J I Gold,et al.  A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[32]  E Friauf,et al.  Transient appearance of calbindin‐D28k‐positive neurons in the superior olivary complex of developing rats , 1993, The Journal of comparative neurology.

[33]  E Neher,et al.  Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. , 1993, The Journal of physiology.

[34]  H. Kasai Cytosolic Ca2+ gradients, Ca2+ binding proteins and synaptic plasticity , 1993, Neuroscience Research.

[35]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[36]  R. Malinow,et al.  Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus , 1992, Neuron.

[37]  C. Heizmann,et al.  Changes in Ca2+-binding proteins in human neurodegenerative disorders , 1992, Trends in Neurosciences.

[38]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[39]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[40]  W. Yamada,et al.  Time course of transmitter release calculated from simulations of a calcium diffusion model. , 1992, Biophysical journal.

[41]  A. Fox,et al.  ω-Conotoxin GVIA blocks a Ca2+ current in bovine chromaffin cells that is not of the “classic” N type , 1992, Neuron.

[42]  R. Silver,et al.  Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ , 1992, Nature.

[43]  M. Poo,et al.  Diffusional transport of macromolecules in developing nerve processes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  T. Bartol,et al.  Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. , 1991, Biophysical journal.

[45]  J. Bossu,et al.  Inactivation characteristics reveal two calcium currents in adult bovine chromaffin cells. , 1991, The Journal of physiology.

[46]  J. Bossu,et al.  Two types of calcium channels are expressed in adult bovine chromaffin cells. , 1991, The Journal of physiology.

[47]  F. Sala,et al.  Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. , 1990, Biophysical journal.

[48]  Stephen J. Smith,et al.  Calcium ions, active zones and synaptic transmitter release , 1988, Trends in Neurosciences.

[49]  M. Glavinović Synaptic depression in frog neuromuscular junction. , 1987, Journal of neurophysiology.

[50]  C. Koch,et al.  The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. , 1987, Science.

[51]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[52]  R. Eckert,et al.  Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. , 1984, Biophysical journal.

[53]  J W Moore,et al.  Dynamics of intracellular calcium and its possible relationship to phasic transmitter release and facilitation at the frog neuromuscular junction , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  D. Tillotson,et al.  Localization of neuronal Ca2+ buffering near plasma membrane studied with different divalent cations , 1983, Cellular and Molecular Neurobiology.

[55]  E Neher,et al.  Sodium and calcium channels in bovine chromaffin cells , 1982, The Journal of physiology.

[56]  W. P. Hurlbut,et al.  Vesicle hypothesis of the release of quanta of acetylcholine. , 1980, Physiological Reviews.

[57]  H. Rang,et al.  Factors affecting the rate of incorporation of a false transmitter into mammalian motor nerve terminals. , 1978, The Journal of physiology.

[58]  S. M. Highstein,et al.  Fatigue and recovery of transmission at the Mauthner fiber-giant fiber synapse of the hatchetfish , 1975, Brain Research.

[59]  R. Miledi,et al.  Characteristics of transmitter release at regenerating frog neuromuscular junctions , 1974, The Journal of physiology.

[60]  T. Reese,et al.  EVIDENCE FOR RECYCLING OF SYNAPTIC VESICLE MEMBRANE DURING TRANSMITTER RELEASE AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[61]  Y. Dunant,et al.  LES COMPARTIMENTS D'ACETYLCHOLINE DE L'ORGANE ELECTRIQUE DE LA TORPILLE ET LEURS MODIFICATIONS PAR LA STIMULATION , 1972 .

[62]  R. Miledi,et al.  Lack of correspondence between the amplitudes of spontaneous potentials and unit potentials evoked by nerve impulses at regenerating neuromuscular junctions. , 1971, Nature: New biology.

[63]  B. Soucek Influence of the latency fluctuations and the quantal process of transmitter release on the end-plate potentials' amplitude distribution. , 1971, Biophysical Journal.

[64]  B. Collier The preferential release of newly synthesized transmitter by a sympathetic ganglion , 1969, The Journal of physiology.

[65]  R. Coupland Determining Sizes and Distribution of Sizes of Spherical Bodies such as Chromaffin Granules in Tissue Sections , 1968, Nature.

[66]  A. Hodgkin,et al.  Movements of labelled calcium in squid giant axons , 1957, The Journal of physiology.

[67]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[68]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[69]  E. Pothos,et al.  Regulation of Quantal Size by Presynaptic Mechanisms , 2000, Reviews in the neurosciences.

[70]  M. Pinter,et al.  Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. , 1993, Biophysical journal.

[71]  K. Kallen,et al.  Transport of lipids to the plasma membrane in animal cells. , 1993, Progress in lipid research.

[72]  S. J. Smith,et al.  Calcium action in synaptic transmitter release. , 1987, Annual review of neuroscience.

[73]  I. von Schwarzenfeld Origin of transmitters released by electrical stimulation from a small metabolically very active vesicular pool of cholinergic synapses in guinea-pig cerebral cortex. , 1979, Neuroscience.